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Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-

electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of

bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic

sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent

transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on

the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at

the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is

also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange

beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream

monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.
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CHAPTER 1

INTRODUCTION

Electron accelerators are a rapidly-advancing field of scientific research with widespread applications

in industry and medicine. The production and acceleration of high-quality electron bunches with ultra-

short durations (below 1 ps) can support the generation of short-wavelength coherent radiation using, e.g.,

the free-electron laser principle [1–4]. Low energy electron bunches can also be directly used to probe

matter via electron microscopy with the availability of short bunches leading to four-dimensional electron

microscopy [5], thereby enabling dynamic probing of transient phenomenon such as phase transitions or

molecular reactions. Finally, high energy physics accelerators such as next generation electron-positron

TeV-scale center-of-mass colliders call for sub-ps bunches at the interaction points [6]. The motivation of

this dissertation is to develop a single-shot diagnostic capable of measuring the time distribution of rela-

tivistic electron bunches.

Many temporal electron bunch diagnostics rely on detecting the electromagnetic field associated with a

moving bunch. To qualitatively describe the principle of operation, consider the field produced by a moving

electron with charge e and trajectory ri(t) as seen by an observer at r, as illustrated in 1.1. In this figure

x

y

z

r

R
i

r
i

Figure 1.1: Geometry of vectors used for a moving particle.
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ri(t) describes the location of a single particle at time t, and the vector Ri(t) = r − ri(t) is the relative vector

between the two points at time t.

The resulting fields for this particle (neglecting subscript i) are obtained from the Liénard-Wiechert

potential [7–9] as

E(r, t) =
e

4πϵ0

 R̂ − β
γ2R2(1 − β · R̂)3

+
R̂ ×

[
(R̂ − β) × β̇

]
cR(1 − β · R̂)3


t=t′

(1.1)

B(r, t) =
1
c

[
R̂ × E

]
t=t′

(1.2)

where E and B are the electric and magnetic fields, respectively, ϵ0 is the permittivity of free space, β =

v/c = ṙi/c with β < 1, and γ is the usual relativistic factor

γ =
1√

1 − β2
. (1.3)

Note that the bracketed terms on the right-hand side are all evaluated at the retarded time t′ = t − R(t)/c.

The first and second terms in the sum of Eq. (1.1) are frequently referred to as the velocity (or Coulomb)

fields and acceleration (or radiation) fields, respectively, due to the second’s dependence on the acceleration

β̇. The 1/R2 and 1/R dependence of the velocity and acceleration fields, respectively, also imply that very

far from the particle the radiation field dominates.

For a dense bunch of particles we may instead describe at every point ri the continuous charge and

current densities ρ and J. By superposition we can sum over all charges and derive the Jefimenko equa-

tions [7, 8]

E(r, t) =
1

4πϵ0

∫ [(
r − ri

|r − ri|3

)
ρ(ri, t′) +

(
r − ri

|r − ri|2

)
ρ̇(ri, t′)

c
−

(
1

|r − ri|

)
J̇(ri, t′)

c2

]
d3ri (1.4)

B(r, t) =
1

4πϵ0c2

∫ [
J(ri, t′) ×

(
r − ri

|r − ri|3

)
+

J̇(ri, t′)
c
×

(
r − ri

|r − ri|2

)]
d3ri (1.5)

with Ri = r − ri and the integrations are performed over all space. Written this way, we see that the

aggregate field takes the form of a (generally quite complicated) 3-dimensional vectorial convolution of

the charge distribution and its trajectories (the phase space distribution) with the response function given

by Eq (1.1). In many easily realized physical cases this can be expressed as a convolution that can be

analytically reduced.
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Therefore one can infer properties of the bunch distribution by observing the electromagnetic radiation

generated under a well-defined situation. Some simple examples include measuring the passing of the

velocity field as the beam drifts, the light thrown off as the beam follows the arcing path through a bending

magnet (synchrotron radiation), or observing the light emitted when the beam strikes a target (transition

radiation). From these one can design an experiment to measure the phase space distribution of a bunch.

Using different, carefully chosen configurations a number of diagnostics can then be developed to probe the

behavior of a charged particle beam to verify and tune its performance. With the bunch distribution having

significant influence on experimental performance, diagnostics capable of measuring it become vital in the

accelerator research and development process.

The goal of this dissertation is therefore to make use of these principles to develop and install a diag-

nostic with sufficient time resolution to measure a high-brightness electron beam with sub-picosecond time

structure at the Fermilab A0 photoinjector (A0PI). Ultimately we used the diagnostics developed to study

the generation and shaping of the longitudinal distribution of an electron beam by making use of a unique

beam manipulation technique pioneered at A0PI.

This dissertation is arranged in six chapters. In Chap. 2 we will describe the accelerator at A0PI and

some relevant principles of its operation. This includes the general layout of the beam line, details on its

unique beam manipulation capabilities, and illustration of the particular radiative process used to generate

the signal we will use to probe the longitudinal distribution.

As the technique we have chosen to probe this signal relies heavily on the use of an ultra-short, broad-

band laser pulse, Chap. 3 provides a review of some fundamentals in optics illustrated periodically by ex-

amples related to the experiment. This will further serve as a basis of the notation we will use in subsequent

analyses.

With groundwork established, Chap. 4 begins with a qualitative overview of the technique chosen to

measure the longitudinal distribution. Details on our experimental setup are described. With the optics

fully defined, more precise quantitative details on the diagnostic process are explained with limitations of

the measurement also addressed.

Chapter 4 will shed light on requirements for the synchronization of our instrumentation to the acceler-

ator as well as calibration of the diagnostics. Chapter 5 therefore provides technical details on how these

issues were overcome with final performance results.

We can then proceed in Chap. 6 to present measurements taken of the electron beam’s longitudinal

profile. Benchmarking of the experiment is demonstrated by the measurement of compressed bunches
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at A0PI. A proof of principle experiment on the generation of a beam with a longitudinal double pulse

structure using novel masking techniques is then performed. We conclude in Chap. 7 with a summary of

findings and their future implications.



CHAPTER 2

ACCELERATOR PHYSICS AND APPARATUS

We now introduce the accelerator as well as some fundamental concepts of accelerator physics relevant

to our experiment. To begin we describe the accelerator layout and the A0PI emittance exchange line. The

goal of this work is to measure the longitudinal distribution of the beam. We therefore introduce transition

radiation and the relationship between its coherent spectrum and the longitudinal electron distribution.

Additional diagnostics employed will briefly be described, as well as a related on-going experiment on

beam generation.

2.1 Accelerator Layout

The A0 photoinjector (A0PI) facility [10] at Fermilab has provided electron beam in support of a variety

of advanced accelerator R&D experiments over the last decade. Shown schematically in Fig. 2.1, the

photoinjector utilizes a Cs2Te photocathode located on the back plate of a 1-1/2 cell, 1.3-GHz resonant

cavity operating on the TM010,π mode, referred to as the radio frequency (RF) gun. The photocathode is

typically driven by the amplified, frequency quadrupled (263 nm) output of the existing drive laser using

a neodymium-doped yttrium lithium fluoride (Nd:YLF) lasing medium to produce 3-ps pulses [11]. This

Nd:YLF laser is capable of producing up to a 100-µs long train of pulses with a 1-MHz repetition rate.

As the laser strikes the photocathode, photoelectrons are produced. These are then accelerated by the

field applied from the RF gun to a typical energy of 4 MeV with a total charge of ∼1 nC or less. Downstream

of the gun, the 1.3-GHz, 9-cell superconducting RF (SCRF) booster cavity operating in the TM010 mode

further accelerates the electron beam up to a maximum of 16 MeV.

A new laser system was also commissioned as a part of this experiment. This broadband, titanium-

sapphire (Ti:sapph) laser can produce 100-fs duration laser pulses in the infrared (IR) to be used with the

ultra-fast, laser-based diagnostics established here, or alternatively be tripled to the ultraviolet (UV) to be

used as the accelerator drive laser. Details on this installation are presented in Chap. 5.
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booster 
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X24

Vertical
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Transverse deflecting 

mode cavity
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Figure 2.1: Top view of the A0 photoinjector setup. The red ellipses and blue trapezoids are quadrupole and
dipole magnets, respectively. The OTR station labeled X09 was used for timing measurements and station
X24 used for EOSD, with optical paths to the streak camera shown.

The beamline also includes quadrupole and dipole magnets necessary to control the beam’s transverse

size and trajectory. The beam then propagates down either the straight-ahead beamline for diagnostics

and user studies or the emittance exchange (EEX) beamline [12–14]. As shown in Fig. 2.1, the latter

consists of a 5-cell, TM110-mode transverse deflecting cavity [15] flanked between two double dispersive

bends referred to as doglegs. The RF gun, 9-cell SCRF cavity and 3.9-GHz deflecting mode cavity are all

synchronized to the 1.3-GHz RF master oscillator.

The accelerator incorporates transverse and longitudinal phase-space diagnostic stations. The stations

pertinent to the experiments presented in this paper are shown as X09 and X24 in Fig. 2.1. Both stations

generate backward transition radiation using the conventional arrangement, discussed in Sec. 2.4. The light

from either cross can be imaged to the entrance slit of a synchronized streak camera (Sec. 2.5.2).

2.2 Definition of beam parameters

For describing the configuration space of the individual particles that make up an electron bunch, we use

the 6D coordinate system (x, x′, y, y′, z, δ) where x, y and z are the spatial coordinates of a particle relative

to the mean reference trajectory s⃗, x′ and y′ are the divergences px/p0 and py/p0, and δ is the fractional

relative momentum offset given in terms of the momentum coordinate p and the mean momentum p0 via

δ = (p − p0)/p0.

In the case of a particle beam we have many particles that can be considered to have a continuous

distribution. It is both practical and customary to describe them in 3 phase space ellipses (u, u′) where u is

a coordinate direction and u′ the associated divergence, related to the conjugate momentum. The original
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derivation and parameterization of the ellipses were first described by Courant and Snyder [16], which we

now summarize here.

Beam transport systems are comprised primarily of magnets designed to control beam trajectory and

shape. Under the Lorentz force imposed by these fields, the equation of motion for a single electron along

the trajectory s is like that of a simple harmonic oscillator (neglecting radiative effects) taking the form of

Hill’s equation [17]

u + K(s)u′′ = 0 (2.1)

where u is a given coordinate x, y, or z and K(s) is the field strength. This is solved by a solution of the form

u(s) =
√
ϵβ(s) sin

[
ψ(s) + ϕ0

]
, (2.2)

where ϵ is a constant. The functions β(s) and ψ(s) are referred to as the beta function and phase advance,

respectively.

Inserting these into Hill’s equation (2.1) one finds that the phase advance is related to the beta function

by

ψ(s) =
∫ s

0

ds′

β(s′)
. (2.3)

We further define the functions

α(s) =
1
2
β′ (2.4)

γ(s) =
1 + α2(s)
β(s)

. (2.5)

Combining all of these, one arrives at the expression for the Courant-Snyder invariant [17, 18]

ϵ = γ(s)u2(s) + 2α(s)u(s)u(s)′ + β(s)u′2(s). (2.6)

The parameter ϵ is therefore a constant of motion. Where the so-called Courant-Snyder parameters α(s), β(s)

and γ(s) are given, this describes an ellipse in u and u′ with an area of πϵ evolving along s. Therefore, if we

choose the ellipse to reasonably enclose the initial distribution at s = 0, the evolution of all particles within
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the beam remain confined to orbits with smaller ϵ. This single phase space ellipse with ϵ = ϵmax can then

be propagated through the beam lattice to compute the limiting beam envelope function

E(s) =
√
ϵmax β(s). (2.7)

In terms of the Courant-Snyder parameters and emittance ϵ, a Gaussian approximation for a continuous

elliptical distribution is given by [18]

ρ(u, u′) =
1

2πϵ
exp

[
−γu2 + 2αuu′ + βu′2

2ϵ

]
. (2.8)

The value of ϵ in this case corresponds to the area within the RMS ellipse for the distribution and is referred

to as the emittance. For this case of uncoupled motion under conservative forces, this remains constant in

each coordinate direction. This is a manifestation of Liouville’s theorem.

Undamped and undriven coupled motion can also occur, though in this case it is the product of emit-

tances ϵ = ϵx ϵy ϵz that remains constant (a reaffirmation of Liouville’s Theorem). Where non-conservative

forces from, e.g., beam acceleration or synchrotron radiation losses take effect this is no longer the case.

The Courant-Snyder parameters along with the emittance provide, in an RMS sense, the orientation and

extent of the phase space distribution of the particles in a bunch, as illustrated in Fig. 2.2 [17]. With the area

Figure 2.2: The geometry of the phase space ellipse and their relation to the emittance ϵ and Courant-Snyder
parameters α, β and γ.
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of the ellipse fixed by ϵ, only two of the three Courant-Snyder parameters are independent with the third

given geometrically

βγ − α2 = 1. (2.9)

The significance of the Courant-Snyder parameters is clear from Fig. 2.2 with β related to the spatial extent

of the beam, γ the spread in divergence and α the u−u′ correlation. Indeed, from Eq. (2.8) we can compute

the moments of the bivariate Gaussian distribution to find [18]

⟨u2⟩ = ϵβ (2.10)

⟨u′2⟩ = ϵγ (2.11)

⟨uu′⟩ = −ϵα. (2.12)

Combining these with Eq. 2.9 we can find ϵ in terms of the RMS values

ϵ =
√
⟨u2⟩⟨u′2⟩ − ⟨uu′⟩2. (2.13)

This RMS sense of ϵ is used in the case of arbitrary bunch distributions [17].

The emittance described so far is influenced by ordinary acceleration as the divergences are inversely

related to the mean momentum. This effect is referred to as adiabatic damping. Therefore the normalized

emittance

ϵ∗ = βγϵ (2.14)

is specified instead, where here β and γ refer to the relativistic factors. The normalized emittances do not

scale under acceleration.

The ϵ∗u describe the compactness of their corresponding phase spaces, a concern in high brightness

accelerator applications such as colliders and light sources. Low transverse emittance implies a spatially

compact beam with a small angular spread. The longitudinal emittance can also be defined in terms of

bunch length and energy spread.

Where the emittance from a given source is minimized, further reduction requires damping such as that

provided by a damping ring. For applications such as the free electron laser, a small transverse emittance

is required. In beams where a smaller longitudinal emittance is available, the two can be swapped by

emittance exchange.
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2.3 Emittance exchange line

The transverse-to-longitudinal emittance exchange line has been of considerable interest for high-

brightness beams. The configuration at A0 was suggested by Emma, et al, in 2006 [19] as a variant of

that of Cornacchia and Emma in 2002 [20]. A0PI has subsequently performed a proof-of-principle exper-

iment of the emittance exchange technique along with its applications to bunch shaping [12–14]. We now

briefly describe the effect of the EEX line on the incoming beam.

The EEX line couples the behavior between coordinates in the x − z plane, so we do not consider the

motion of the y phase space. In the remaining 4D basis and under the thin lens approximation, one finds

that the single-particle transfer matrix MEEX for the combined elements in the EEX line (Fig. 2.1) with an

appropriately chosen strength of the deflecting mode cavity reduces to [12]



x f

x′f

z f

δ f


=



0 0 − 1
α

(
1 + l

L

)
−αl

0 0 − 1
αL −α

−α −αl 0 0

− 1
αL − 1

α

(
1 + l

L

)
0 0





xi

x′i

zi

δi


(2.15)

This is written in the form r f = MEEXri where ri is the initial coordinate, r f the position after the EEX

line and with L the distance between the dipoles in each of the two doglegs, l half the distance between the

doglegs and α the bending angle of the dipoles, as shown in Fig. 2.3.

Figure 2.3: Geometry of the emittance exchange beam line. With appropriate choice of settings for the
transverse deflecting mode cavity (center), the transfer matrix creates a map between phase space coordi-
nates (x, x′)↔ (z, δ).
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As the form of the transfer matrix is totally anti-block diagonal, we see that the transverse x phase space

maps to the longitudinal z space and vice versa. This implies that with proper tuning one may rotate an

elongated bunch in the coordinate x − z space, as shown in Fig. 2.3.

This process is also sometimes referred to as “phase space exchange.” In general only the emittance,

related to the area of the phase space, should undergo a 1:1 exchange in x↔ z in the linear approximation.

The precise form of how the individual particles swap then depends on the above transformation.

This property of transverse-to-longitudinal EEX is advantageous in a free-electron laser where one

desires a small transverse emittance. The small longitudinal emittance of a compressed beam can then in

principle be exchanged to produce a smaller transverse emittance as needed.

Alternatively pulse compression can also be achieved in EEX by adjusting the beam focusing upstream

of the emittance exchanger. This change in the incident x − x′ distribution can be optimized to produce a

minimum in the outgoing temporal width.

Extending beyond compression, one can use EEX to shape the outgoing longitudinal profile [21]. Here

one imparts a modulation to the horizontal beam distribution which becomes a longitudinal modulation after

EEX. This can be accomplished by masking the beam, as has been demonstrated [14]. We ultimately use

system developed here to study a variation on the longitudinal modulation process previously performed.

In all of these cases, a shot-to-shot monitor of the outgoing longitudinal profile is helpful for rapid tuning

and monitoring of the beam. The profiles generated are expected to have structure on the order of 1 ps or

less, so high time resolution is also required. Beyond the obvious advantage in acquisition speed, single-

shot measurements can also provide a benefit over fast multi-shot or integrating techniques by avoiding the

accumulation of statistical error that can effectively wash out the temporal resolution.

2.4 Transition radiation

As stated in the introduction, information about the electron distribution can be inferred by observation

of a radiative process in the beam line. From Eq. (1.1) we note that far from the beam, the dominant field

component is related to the radiative β̇ term whenever there is a change in trajectory. Using Eq. (1.1) we

can estimate the field E(r − r′) that would be observed at the distant point r for a single electron located at

point r′. Jefimenko’s equation (1.4) then describes the radiation from the bunch as the 3D convolution of

this response function with the bunch distribution ρ(r′).
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In our experiment the diagnostic signal is generated by colliding the beam with an aluminized target

located at diagnostic cross X24 (Fig. 2.1). As the relativistic electrons undergo the rapid transition from

vacuum to metal, it emits a burst of what is referred to as transition radiation (TR).

2.4.1 Single-electron transition radiation response

In the approximation derived by Ginzburg and Frank [22, 23], the response is modeled as an electron

encountering an infinite conductive plane. They regard the phenomenon using the method of images with

the negative charge approaching its positive image in the opposite half-space defined by the conductor to

satisfy that the potential remain zero across the surface. The moment of collision corresponds to an infinite

deceleration of infinitesimal duration as the two annihilate so that the β̇ of Eq. (1.1) can be regarded as a

Dirac delta function directed counter to the initial velocities. The resulting spectral intensity distribution is

found to be radially polarized with observed intensity [7, 8, 22, 23]

∣∣∣Ee

∣∣∣2 (ω, R, θ) =
e2β2 sin2 θ

4πϵ0cR2 (
1 − β2 cos2 θ

)2 (2.16)

where e is the electron charge, β is the relativistic velocity factor, θ the polar observation angle, and R the

observation distance with R ≫ γλ. The distribution is rotationally symmetric and therefore takes the form

of a hollow cone with the maximum occurring at a half-opening angle of θTR = 1/γ [8], where γ is the

relativistic factor of the beam. (In our case γ ≈ 32 so that θTR ≈2◦.) The intensity is constant in frequency,

corresponding to the delta function in time.

The image charge approach for the more general case of oblique incidence at an infinite, perfectly

conducting foil is shown in Fig. 2.4. As noted by [24, 25], this can be described using the rapidly accelerated

image charge approach. The trajectory of the image charge is chosen to be the mirror of the incident electron

to maintain zero potential across the interface. Immediately upon striking the foil, the image must change

trajectories to match the electron to maintain charge neutrality within the conductor. Where the duration of

the interaction is very short compared to the wavelength observed, the radiative fields can then be calculated

using Jackson’s description of scattering and bremsstrahlung [7, 24, 25].

A conical distribution similar to that of the Ginzburg-Frank formula (2.16) is emitted in the forward

direction of image charge incidence β+,1 (backward TR) and then in the direction of the reflected trajectory

β+,2 as the inverse process occurs on the opposite face of the foil (forward TR), but with some asymmetry
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Figure 2.4: Illustration of method of images approach to transition radiation. Before the electron strikes the
foil (left), the image charge mirrors the incident electron. After crossing the boundary (right), the image
charge co-propagates with the electron. TR is generated by the effectively instantaneous acceleration of the
image at the boundary.

in the direction of the plane of incidence. Far from the collision point, again with R ≫ γλ, the intensity can

be written as [7] ∣∣∣Ee

∣∣∣2 (ω, R) =
e2

16πϵ0cR2

∣∣∣∣∣∣ β+,2 × R̂

1 − β+,2 · R̂
− β+,1 × R̂

1 − β+,1 · R̂

∣∣∣∣∣∣
2

(2.17)

where R is the vector to the observation point, assuming the transition occurs at the origin. In the case of

normal incidence β+,2 = −β+,1, this reduces to the Ginzburg-Frank form of Eq. (2.16).

For typical beams, the far-field condition R ≫ γλ can be easily met for optical wavelengths. How-

ever, for wavelengths emitted in the mm to sub-mm range, this can be violated for high-energy beams.

The long wavelength also begins to compare with the diameter of the aluminum target introducing finite

radiator effects that breakdown the infinite foil approximation. And for typical laboratory optics with tens-

of-millimeter apertures, the subsequent propagation of such radiation is strongly effected by diffraction.

Attempts to account for both the finite size of the radiator and the diffraction losses incurred in the

imaging optics have been explored by the accelerator community in recent years [25–32]. Our own model

was developed [33, 34] based on the theory of virtual photons for modeling the emission of radiation at a

metal interface [8] and the vector diffraction theory developed by Marathay and McCalmont [35] for the

propagation of the THz waves.

In the virtual photon approach, the radiated field is approximated as the reflection of the Fourier com-

ponents of the Lorentz-boosted Coloumb field. In polar coordinates with a relativistic electron at the origin

the transverse, radial electric field Ẽr is [8, 25, 33]

Ẽr (ω, r, z) =
qω

(2π)3/2ϵ0β2c2γ
K1

(
ω

βcγ

)
exp

(
iω
βc

z
)
. (2.18)
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The propagation of this effective source is then treated by the chosen expression for scalar or vector diffrac-

tion. For example, following the treatment of [28], for scalar diffraction we apply the integral [7, 8]

Ẽ (k, r) =
∫

S ′
Ẽ

(
k, r′

) eikR

R
d2r′, (2.19)

where k = ω/c, r is again a distant observation point, r′ a point on the surface of the aperture S ′, and

R = r − r′. This is simply the Huygens-Fresnel principle of secondary spherical waves. Closed-form

solutions of this integral for arbitrary fields at an arbitrary distance are frustrated in most cases by the

dependence on R, though numerical solutions and some approximations are straightforward.

In Fig. 2.5 we have computed numerically the spectral fluence as a function of polar observation angle

ϕ for a γ = 50 electron at normal incidence to a 50-mm diameter metal target as seen at a distance of

R = 50 mm using instead the more detailed vector diffraction expressions provided by [35]. This distance

roughly corresponds to that from the foil to the diamond window in Fig. 2.6. Both the finite radiator and

diffraction effects are observed at low frequencies as the amplitude decays weakly below ν ≈ 0.5 THz

while simultaneously beginning to spread out in the transverse plane. For higher frequencies the peak angle

converges, though in this near-field case θTR = 3.4◦, about three times larger than that predicted by (2.16).

Figure 2.5: Spectral fluence [arbitrary units] as a function of polar observation angle ϕ for a γ = 50 electron
at normal incidence to a 50-mm diameter metal target at a distance of R = 50 mm from the target.

As the solution provided by [35] preserves the vector nature of the light, repeated propagation through

several optics can also be calculated. Such simulations were carried out for previous studies [34] to propa-
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gate the field through the imaging optics to the experimental observation point. Initial generation occurs in

a 6-way vacuum cross by colliding the beam with an aluminized target, as depicted in Fig. 2.6. We compute

the relative power transmission function T (ν) including effects from fractional emission at the foil, losses

from partial transmission of the spatial distribution at the vacuum window, and partial integration over a

6-mm detection surface at the observation point. The resulting T (ν) is shown in Fig. 2.7.

Emitted CTR

Pipe at 6-way

cross X24

Al mirror

Beam

Parabolic mirror

( f = 152 mm )

Diamond

window

Figure 2.6: Emission of long-wavelength coherent transition radiation (CTR) from an aluminized target
inserted 45◦to the electron beam. The light leaves the vacuum pipe through a diamond window to be
collimated for transport by a gold parabolic reflector.
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Figure 2.7: Simulated relative power transmission function T (ν) to a 6-mm diameter experimental observa-
tion point for transition radiation including finite foil and diffraction effects in optical system.
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We see that the low frequency components in the tens-of-GHz regime are strongly suppressed. The

transverse masking of the long wavelengths becomes an effective amplitude modulation in frequency. This

complicates any measurements relying on the low-frequency spectrum of the TR.

2.4.2 Transition radiation of a bunch

The significance of the long-wavelength components comes to bear as many electrons strike the foil.

By superposition we sum over all contributions to the total radiation field component E(k) of wavenumber

k = ω/c from a distribution ρ(z) normalized to unit charge e and bunch of total charge Q = eN at the foil,

E(k) = N
∫ ∞

−∞
Ee(k)ρ(z)eikzdz (2.20)

where Ee(k) is the single-electron contribution to the image field at our observation point. The resulting

measured intensity will be given by the modulus-squared. This is found to be [24]

I(k) = N(N − 1)Ie(k) f (k) + NIe(k) (2.21)

where we have introduced the 1D bunch form factor f (k)

f (k) =

∣∣∣∣∣∣
∫ −∞

∞
ρ(z)eikzdz

∣∣∣∣∣∣2 . (2.22)

This is the modulus-square of the Fourier transform of the bunch distribution. The first term in Eq. (2.21)

is proportional to both f (k) and N2. It becomes dominant in the regime where the wavelength is longer

than the duration of the bunch. Physically it describes the TR of the individual electrons being radiated

approximately in phase with each other creating a coherent enhancement. Therefore this is referred to as

the coherent transition radiation (CTR) with spectral components ideally given by

ẼCTR(k) ∝
∫ ∞

−∞
ρ(z)ei kzdt (2.23)

For compact electron beams with bunch lengths on the order of a few picoseconds and smaller as at A0PI,

this then implies coherent emission into the THz regime. Of course, the effect of diffraction losses that can
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be introduced via the single electron transfer spectrum Ee(k) as discussed in Sec. 2.4.1 then also need to be

taken into account.

For the coherent portion of the spectrum, this is attractive to the high-brightness accelerator community

as, among other things, a longitudinal diagnostic tool. One can in principle measure the power spectrum of

the emitted radiation which is the modulus-squared of (2.23). This can be a strong signal for bright beams

as the intensity of this portion of the spectrum scales with the square of the total bunch charge. At the very

least an estimate of the bunch duration can be inferred by the inverse of the bandwidth of the measured

spectrum.

Further, spectral techniques in conjunction with reconstruction algorithms can recover the phase infor-

mation lost by measuring the modulus-squared of the distribution’s Fourier transform with some success

(c.f., [36]). From this additional temporal profile information is inferred. Fortunately the technique devel-

oped here is regarded as a sign-resolving time-domain approach, as we will see in Sec. 4.1, allowing one to

circumvent the need for such reconstruction.

In the optical range wavelengths become much shorter than our bunch length. This is the incoherent

regime and is referred to as optical transition radiation (OTR). When using ordinary optical detectors, there

is little time-frequency correlation in the light observed. We extend Eq. (2.22) to the two-dimensional case

and preserve only the second, incoherent term. In this case we define a charge distribution that can be

decoupled in time t ≈ z/c and transverse vector r⊥ as

ρ(r) = Nρt(t)ρ⊥(r⊥) (2.24)

with ρt and ρ⊥ again normalized to a unit charge e so the total bunch charge is Q = Ne. The second,

incoherent term of (2.22) becomes [24, 26, 32]

Iincoh(r⊥, t) = Nρt(t)
∫

S ′

∣∣∣Ee(r − r′)
∣∣∣2 ρ⊥(r′⊥)d2r′⊥. (2.25)

For optical wavelengths we note the 2D convolution of the transverse distribution with the effective point

spread function given by the intensity that would be seen for the imaging of a single electron via |Ee|2.

Using an ordinary imaging system and camera we can therefore produce an image of the beam subject to

the spatial resolution imposed by this effective transfer function. In the optical regime and using an ordinary
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imaging lens of focal length f and radius a, it has been shown that where γ ≫ a/ f that the FWHM spatial

resolution ∆r is [26]

∆r ≈ 1.44
λ f
a
. (2.26)

In the optical regime, resolution on the order of microns is regularly achieved.

2.5 Existing diagnostics

We now describe some relevant conventional diagnostics installed at A0PI used for these experiments.

The first is a longitudinal bunch distribution measurement that, like the diagnostics developed here, are

sensitive to the millimeter-wave CTR. Alternatively, the incoherent OTR pulses can be sent to the time-

resolved streak camera to determine their duration. And finally, by transverse imaging of the OTR with an

ordinary CCD camera, a technique to determine the beam profile and divergence will be described.

2.5.1 Martin-Puplett Interferometer

The Martin-Puplett interferometer at A0PI [37] is an existing longitudinal bunch distribution diagnostic

that is also based on probing the CTR transient ET Hz. This is accomplished by measuring the total power

of the interference pattern generated by the signal ET Hz(t) and its time-delayed replica ET Hz(t − τ). This is

a slow, multi-shot technique requiring that the delay τ be stepped between successive measurements and

assumes that the bunch structure remains stable between shots. One complete scan takes about 15 to 20

minutes to complete, emphasizing the appeal of real-time, single-shot measurements. A recent thorough

analysis of such a system is given, e.g., in [38].

To generate the interferogram, the incoming signal ET Hz is split by a wire mesh polarizer at 45◦to the

vertical polarization of the incident light. One pulse traverses a path with a delay that is variable relative to

the other before recombining. This is again split by a vertical polarizer. The two resulting signals are then

focused onto a pair of pyroelectric detectors sensitive to the mid-IR wavelengths, as illustrated in Fig 2.8.
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Figure 2.8: Optical layout for a Martin-Puplett interferometer. See text for complete description.

Taking the difference of the integrated power seen by the two detectors divided by their sum yields an

interferogram (IF) that, when assuming real ET Hz(t), can be expressed in the time domain as

IF(τ) ∝
∫ ∞

−∞

∣∣∣ET Hz(t) + ET Hz(t − τ)
∣∣∣2dt (2.27)

= 2
∫ ∞

−∞

∣∣∣ET Hz(t)
∣∣∣2dt + 2

∫ ∞

−∞
ET Hz(t)ET Hz(t − τ)dt. (2.28)

This is the form of the autocorrelation of the signal ET Hz plus a DC offset related to the integrated power of

the pulse.

The width of the IF is therefore directly proportional to the bunch length within a scaling factor deter-

mined by the bunch shape and subject to similar low-frequency diffraction losses as described in Sec. 2.4.

As a frequency-domain technique, the phase information required to directly deduce the ET Hz is lost. This

can be recovered to some degree by applying the Kramers-Kronig relations [36, 39, 40].

However, the diagnostics developed here in principle recover the profile ET Hz directly, including sign.

From this data we can forward compute a theoretically equivalent interferogram using (2.27) and compare

results to those measured by the interferometer. In this way the interferometer will be used to provide an

independent measurement, testing the consistency of the new single-shot diagnostics.
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2.5.2 Streak Camera

Where a very broad bandwidth of the optical spectrum can be collected, Eq. (2.25) shows that a weak

temporal modulation related to the original bunch duration should be observed for even the incoherent part

of the spectrum. Measurement of this sort incoherent temporal profile requires a highly sensitive time-

resolved measurement of the pulse that’s insensitive to incident wavelength.

The streak camera is such a fast, time-resolved imaging system, ordinarily used for bunch length mea-

surements at A0PI [41–43] by imaging the incoherent OTR from the beam with reflective optics. A simple

schematic of streak camera operation is shown in Fig. 2.9. The light pulse is incident on the entrance slit

of the unit and imaged to a photocathode. The photoelectrons generated are subject to a small accelerating

field. These are subsequently deflected by an alternating electric field to sweep out the pulse, introducing

a spatio-temporal correlation. As there are very few photoelectrons, the pulse then strikes a microchannel

plate to multiply them before they collide with a phosphor screen. The resulting optical pulse is imaged to

a camera. Depending on the amplitude and phase of the applied deflecting field, the temporal structure of

the original light pulse is thereby imaged in the transverse plane.

Figure 2.9: Schematic overview of streak camera operation showing signal propagation from left to right.
A light pulse is incident on the slit and imaging optics, striking the photocathode under a small accelerating
field to produce electrons. These are deflected by an alternating gradient to sweep out the pulse, introducing
the spatio-temporal correlation. The electrons then strike a microchannel plate to multiply the electrons
before striking a phosphor screen. The resulting optical pulse is imaged to a camera.

The sweep unit that generates the alternating deflecting field is equipped with synchroscan and phase

lock loop (PLL) electronics to maintain synchronization with the 81.25-MHz subharmonic of the A0PI

master oscillator [41]. To adjust temporal range and resolution the sweep rate is adjusted which changes

the amplitude of the deflecting field to increase or decrease the magnitude of the deflecting kick. Four
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settings are available with the fastest sweep range, referred to as range 1, having a single-sweep resolution

of 540 fs RMS with the next-fastest sweep rate (range 2) having a temporal resolution of 2.5 ps.

As the streak camera sweep unit is phase locked to the RF, it is also used in this analysis to perform

synchronization measurements by tracking the centroid of images. In principle, if the sweep unit is perfectly

synchronized the accelerator RF, light generated by the beam should always be imaged to the same screen

position. In practice the standard deviation of shot-to-shot changes in streak image position from tracking

a similarly phase-locked laser pulse train is typically found to be ∼1 pixel. This corresponds to 320 fs in

sweep range 1 and 1.5 ps in range 2.

Besides the time resolution introduced by imaging and the electronics, pulse integration can also dilute

the resolution when determining the duration of a single streak image. Such pulse stacking is frequently

used when making measurements of the relatively weak OTR pulses. Where a train of pulses enters the cam-

era, each is stacked onto roughly the same screen position and their intensities summed, generating more

light from the phosphor screen. However, as this is not a truly single-shot approach, timing fluctuations in

the signal or sweep unit over the scale of several RF cycles cause a broadening of the stacked images on

the screen. This can therefore degrade single-image temporal resolution as one approaches measurements

on the order of the system stability.

2.5.3 Emittance measurement

For longitudinal emittance measurements in the straight-ahead line (Fig. 2.1), bunch length is deter-

mined by streak camera using OTR from X09. A Gaussian fit to the streaked image is used to determine

⟨z2⟩.

The mean beam momentum and fractional momentum spread are determined in the spectrometer at the

end of the line. Upstream horizontal focusing is used to produce the minimum width in the energy direction

on a camera image of the spectrometer OTR screen. Again a Gaussian fit is used to determine the energy

spread ⟨δ2⟩.

When measuring the longitudinal emittance, the beam is tuned to produce an up-right phase space as

inferred by minimizing the total fractional momentum spread observed in the spectrometer. In the absence

of correlations between z and δ the emittance can then be found from the measured widths by

ϵ∗z ≈ βγ
√
⟨z2⟩⟨δ2⟩ (2.29)
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where β and γ are the relativistic factors, computed from the mean momentum determined in the spectrom-

eter.

In the transverse directions, the multi-slit method is used [12, 44–46]. An image of the beam is taken

from an OTR screen inserted just after the booster cavity in Fig. 2.1. This provides the transverse distri-

bution in that plane. The screen is removed and a tungsten mask with either horizontal or vertical slits is

inserted in the beam to generate beamlets. 0.8 m upstream of the slits another OTR screen is inserted to

capture an image of the beamlets, as illustrated from a side view in Fig. 2.10.

Figure 2.10: Geometry for transverse emittance measurement by the slit method.

Assuming negligible space charge so that the contribution from divergence dominates, the beamlets

produced will individually deviate from the axis at the rate given by the divergence u′i at the associated i-th

slit position ui. They will also individually broaden at the rate given by the uncorrelated beam divergence

∆ui. By measuring the positions si and widths ∆si of the beamlet associated with the i-th slit, one can infer

the points in the beam sampled by the slits as

u′i =
si − ui

L
(2.30)

∆ui ≈
∆si

L
(2.31)

The expression for ∆ui is only approximately true as the initial finite width of the slit will also contribute

to the width of the beamlet observed downstream. Where the slit width w is much smaller than the mea-

sured beamlet width, this can be neglected. As they become similar, one can make minor corrections by

subtracting the slit width in quadrature from the measured width so that Eq. (2.31) becomes

∆ui ≈

√(
∆si

L

)2

− w2 (2.32)
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The effect of a drift on the ellipse is a shearing in the spatial direction [17]. An illustration of this and

how the sampled values s relate to the phase space ellipses in u are shown in Fig. 2.11 for the spatially

masked distribution. The spread in u is therefore known from the image taken of the beam in the slit

plane. The slope of the correlated divergence can be determined by a fit through the sampled x′i (xi) with the

uncorrelated divergence spread determined via Eq. (2.31). This is sufficient to fully define a phase space

ellipse in the plane of the slits and determine the Courant-Snyder parameters and emittance there.

Figure 2.11: Transverse phase space ellipses for the slit measurement with parameters shown corresponding
to those illustrated in Fig. 2.10. (Left) shows the ellipse immediately after being masked. (Right) shows the
shearing of the ellipse from the drift of length L and the measured beamlet positions si and widths ∆si.

2.6 Ellipsoidal bunch

As it effects details on the installation of the Ti:sapph laser used as an ultra-fast probe for our diagnostics,

we note that the system was chosen to alternatively drive the formation of ellipsoidal bunches in the “blow-

out regime” [47–49]. Ellipsoidal bunch distributions have the desirable quality of minimizing the growth

of the phase space under the repulsive Coulomb force referred to as the space charge effect as these internal

forces remain linear for ordinary beam propagation.

The distribution is generated by utilizing space charge itself during the process of bunch formation in-

side the RF gun. When a very short duration laser pulse strikes the photocathode, a thin pancake distribution
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of charge is emitted. This distribution is initially low energy prior to full acceleration. In the laboratory

frame, one finds that the space charge effect causes the dense bunch to expand, generating an ellipsoidal

distribution [47]. This distribution is then effectively frozen in the laboratory frame by the final acceleration

stage.

Results of ASTRA simulations [50] for this process are shown in Fig. 2.12 for a drive laser pulse with a

root-mean-squared (RMS) duration of 200 fs and 100 pC of total bunch charge after both the RF gun (beam

energy E = 4 MeV) and booster cavity (15 MeV). Each time-projection is plotted in comparison of the

temporal profile of the laser used to drive photoemission. The expansion of the bunch from the originating

laser duration is apparent, as is the parabolic temporal profile expected for a bunch that is a 3-dimensional

ellipsoid.
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Figure 2.12: ASTRA simulation of ellipsoidal bunch formation in the blow-out regime at A0PI showing
the resulting x − t distribution (top) and temporal profile (bottom) for a 100 pC after the RF gun (left) and
booster cavity (right). Profiles are compared to the 200-fs (RMS) laser pulse used for the simulation.

The titanium-sapphire laser installed is capable of generating the requisite ultra-short pulse. In this case

the amplified 800-nm infrared (IR) laser output must be frequency tripled to the ultraviolet (UV, 266 nm)

as required for photoemission from our Cs2Te photocathode, then delivered to the accelerator tunnel.
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Many of the demands regarding machine synchronization and delivery of the laser pulse to the accel-

erator tunnel overlap for these experiments. Therefore, where it impacts the design of our installation, we

will also mention related details on the alternative use of the newly requisitioned Ti:sapph system as an

ultra-short photoinjector drive laser.



CHAPTER 3

OPTICAL THEORY

The diagnostic method used here will employ the use of a broadband laser pulse to act as an ultra-fast

probe of the CTR from the beam. We have also just mentioned the alternate use of this laser to generate

a short drive laser pulse for the photoinjector. Pursuant to these applications, some basic laser science is

needed.

It is helpful to begin with the description of some fundamental optics then, as much for the sake of

review as detailing our notation and assumptions. A variety of descriptions for all of the following basic

phenomena are available in the standard texts. Even in these cases, we frame things by the same first

principles to connect the terminology in a meaningful way. This will also ultimately demonstrate the

systematic approach to nonlinear optics problems that we will use to describe the measurement of the

CTR.

Management and diagnosis of a broadband, coherent laser pulse is most strongly linked to behavior in

the time-frequency domain. For simplicity we constrain ourselves to the time-frequency analysis of our

optical wave beam for ultra-fast optics in general. This is analogous to the study of the one-dimensional,

longitudinal dynamics in the vernacular of particle beam physics.

We start with the general wave equation and solution for free-space propagation of an electromag-

netic field. For the infinite plane wave-case we can then describe the temporal and spectral properties of

a broadband pulse. Dispersion in amorphous glass is then explained with a simple example of laser pulse

broadening. Linear birefringence in a medium is presented leading to the tensor and Jones calculus for-

malisms for polarization analysis along with the example of bulk wave plates. Many recurring terms used

in ultra-fast and nonlinear optics will then be established.
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3.1 The wave equation

All of the problems described in this chapter reduce to the solution of freely propagating electromagnetic

waves interacting with a given medium. We therefore begin by closely following the familiar treatments

presented in [51, 52].

In the absence of any free charge, the differential form of Maxwell’s equations in a medium are

∇ · D = 0 (3.1)

∇ · B = 0 (3.2)

∇ × E = −∂B
∂t

(3.3)

∇ ×H =
∂D
∂t

(3.4)

with the electric displacement D, magnetic field B, electric field E and magnetizing field H. In the context

of nonlinear optics, we assume all solutions are in nonmagnetic materials with relative permeability µ = 1

so that

B = µ0H (3.5)

where µ0 is the permeability of free space. However, the dielectric displacement takes the general form

D = ϵ0E + P (3.6)

where ϵ0 is the permittivity of free space and the induced polarization P in general can depend linearly or

nonlinearly on the local electric field E, depending on the interactions allowed by the material within which

the electromagnetic wave propagates. In sections to follow, we will consider several types of materials and

how they relate E to P.

By differentiation and substitution of Eq. (3.1)- (3.4) and using µ0 = 1/ϵ0c2, we arrive at the general

wave equation

∇ × ∇ × Et(r) +
1
c2

∂2Et(r)
∂t2 = − 1

ϵ0c2

∂2Pt(r)
∂t2 (3.7)

where we use the subscript to denote Et(r) = E(r, t).
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We can also write Et (r) in terms of its Fourier decomposition everywhere in space.

Et (r) =
1
√

2π

∫ ∞

−∞
Ẽω (r) e−iωtdω (3.8)

As Et(r) is a real, measurable quantity and related to Ẽω(r) by inverse Fourier transform, it is necessary that

Ẽ−ω (r) = Ẽ
∗
ω(r) (3.9)

From this, we note a frequently used alternative convention [51] where Eq. (3.8) is written in the form of

integrating over only positive frequencies and adding the complex conjugate. The temporal field is written

by first splitting (3.28) into positive and negative components.

Et(r) =
1
√

2π

{∫ 0

−∞
Ẽω(r)e−iωtdω +

∫ ∞

0
Ẽω(r)e−iωtdω

}
(3.10)

Using the change of variable ω→ −ω in the first integral,

Et(r) =
1
√

2π

{∫ ∞

0
Ẽ−ω(r)eiωtdω +

∫ ∞

0
Ẽω(r)e−iωtdω

}
(3.11)

and inserting (3.9), we have

Et(r) =
1
√

2π

∫ ∞

0
Ẽω(r)e−iωtdω + c.c. (3.12)

where c.c. denotes the complex conjugate of the first term in the sum.

We will see that the presence of both positive and negative frequency components and assertion of their

being related by (3.9) has several implications which will become important later in discussion of sum- and

difference-frequency generation. It further allows us to break (3.12) into two components as

Et(r) =
1
2

[
Ẽt(r) + Ẽ

∗
t (r)

]
(3.13)

where a complex temporal field is then given by the sum over only positive frequencies

Ẽt(r) =

√
2
π

∫ ∞

0
Ẽω(r)e−iωtdω (3.14)



29

This complex temporal solution can be useful, for example, in describing the slowly varying envelope of an

optical pulse, as we will see in Sec. 3.2.3.

Returning to the wave equation, we insert our expansions (3.8) back into (3.7) to find in the frequency

domain defined above

∇ × ∇ × Ẽω(r) − ω
2

c2 Ẽω(r) =
ω2

ϵ0c2 P̃ω(r) (3.15)

The double curl terms in both (3.7) and (3.15) can be expanded identically as

∇ × ∇ × E = ∇ (∇ · E) − ∇2E (3.16)

When D is linear in E, the first term on the right hand side of Eq. (3.16) will vanish as we are using a charge-

free description. However, for the more general nonlinear case this is not true. As Boyd points out [51],

this term still vanishes identically under the infinite plane wave approximation or can be made negligible

under the slowly-varying amplitude approximation. We will introduce these explicitly as necessary later,

but when such approximations can be made (3.7) and (3.15) simplify to

∇2Et(r) − 1
c2

∂2Et(r)
∂t2 =

1
ϵ0c2

∂2Pt(r)
∂t2 (3.17)

∇2Ẽω(r) +
ω2

c2 Ẽω(r) = − ω2

ϵ0c2 P̃ω(r) (3.18)

Solutions to this equation can be used to describe a number of physically interesting cases. To find these

solutions, one must make appropriate choices for the induced polarization P (dependent on the electronic

properties and symmetry of the medium) with the initial conditions set by the wave incident at the medium’s

boundary.

3.2 Free-wave solution and 1D description of an optical pulse

The most straightforward solution to Eq. (3.7) is found in vacuum where, in the absence of a medium,

P = 0 and Eq. (3.18) is exactly true becoming

∇2Ẽω (r) =
−ω2

c2 Ẽω (r) (3.19)
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Eq. (3.19) is still of a very general form. In conjunction with the same solution for B, it describes the

source-free propagation of an electromagnetic wave. The initial wave should be regarded as the boundary

conditions imposed on the above differential equations. The general solution of this formula is highly com-

plex for arbitrary initial conditions, that is to say, for any given incident wave. Describing free propagation

of light, the general solution leads to the subject of vector diffraction.

We note, however, that the solution with spatial dependence

Ẽω (r) = Ẽωei k·r (3.20)

satisfies Eq. (3.19) where k = (ω/c) k̂, k̂ being the direction of propagation, and Ẽω ⊥ k̂ [52]. (In principle

k = − ω/c is also a solution, but we assume the initial conditions on the derivative of Ẽω are chosen such

that the positive case is valid.)

In general k and Ẽω still depend on all three spatial coordinates. We can further restrict ourselves to the

infinite plane wave solution where Ẽω is everywhere uniform and k̂ = ẑ. Then (3.20) reduces to

Ẽω(z) = Ẽωeikz (3.21)

In our context this is selecting the solution meeting the boundary conditions for a spatially uniform electric

field Et(z = 0) with vector components only in the z = 0, x − y plane. To clarify, we solve explicitly for the

time evolution of E(z, t) in this somewhat unremarkable case.

Inserting (3.21) back into (3.8), we find

Et(z) =
1
√

2π

∫ ∞

−∞
Ẽω(0)eikze−iωtdω (3.22)

From (3.8) we find

Ẽω(0) =
1
√

2π

∫ ∞

−∞
Et(0)eiωtdω (3.23)

so that with k = ω/c, (3.22) becomes

Et(z) =

∫ ∞

−∞

∫ ∞

−∞
Et′(0)

exp [i (t′ − t + z/c)]
2π

dω dt′ (3.24)

=

∫ ∞

−∞
Et′ (0) δ

(
t′ − t + z/c

)
dt′ (3.25)

Et(z) = Et′−z/c(0) (3.26)
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Eq. (3.26) shows that if we define the temporal profile of an electric field in the z = 0 plane, it is then

defined for all z as just the initial field propagating along z at the speed of light.

Et(z) can be regarded as our optical pulse where we neglect transverse effects, a fair approximation of

a well-collimated laser. As we will see, should it encounter a different medium as it propagates, the local

spectral profile (and therefore the temporal profile) can be altered. The above connection to the Fourier

transform is therefore important to understanding terms used to parameterize the temporal and spectral

properties of a pulse.

3.2.1 The spectral phase and time-bandwidth product

Having introduced the Fourier decomposition above, we now identify terms commonly used in photon-

ics to characterize what we consider the longitudinal phase space of an optical pulse in this 1-D approxi-

mation. The temporal and spectral fields of a plane wave are linked by the Fourier transform as

Et(z) =
1
√

2π

∫ ∞

−∞
Ẽω(z)e−iωtdω (3.27)

Ẽω(z) =
1
√

2π

∫ ∞

−∞
Et(z)eiωtdω. (3.28)

If we adhere to seeking a real solution in the time domain, the relation (3.9) for the complex quantity Ẽ(ω)

is implied. Note that one can only uniquely define either the temporal or spectral amplitude and phase when

the other is assumed given by the above Fourier transform relations.

When parameterizing a 1-D optical pulse, the temporal or spectral profile refers to the optical power.

This is proportional to the intensity I of the electric fields given above

I(ω) ∝ |E(ω)|2 (3.29)

I(t) ∝ |E(t)|2 (3.30)

It is often useful to specify the spectral bandwidth ∆ω and pulse length ∆t then in terms of the full width

at half-maximum of these intensity profiles. The shortest possible pulse (in an RMS sense) is always given

by the transform of the spectral field with ϕ = 0 which can be computed to give the minimum pulse length

and is dependent on the shape of the spectral amplitude.
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From these one can define the conventional minimum time-bandwidth product (TBP) of a given pulse

shape pulse ∆ν∆t, where ∆ν is the ordinary bandwidth related to the circular bandwidth via ∆ν = ∆ω/2π.

For a given bandwidth and spectral shape, one can then compare the measured TBP to its minimum to

assess the compactness of the pulse (c.f. [53]).

The complex spectral field is typically written in terms of its real amplitude Eω and complex phase ϕω

with the phase described by the coefficients Dk in the Taylor expansion in angular frequency as

Ẽω = Eω exp
[
iϕω

]
(3.31)

ϕω =
∑

k

Dk

k!
(ω − ω0)k (3.32)

Dk =
∂kϕ

∂ωk (3.33)

for an optical pulse with center frequency at ω0.

Only the first few coefficients in Dk are of particular interest assuming a relatively slowly varying ϕω

over the small region where there is strong spectral amplitude. D0 represents a constant arbitrary phase

ϕ0 while D1 has units of time and is the group delay (GD) Tg of an optical pulse. In the narrow-band

approximation where we use the Taylor expansion above, Tg(ω0) can be regarded as the accumulated time

delay of a pulse.

In the continuum sense, Tg(ω) = ∂ϕω/∂ωmay be loosely interpreted as describing the expectation value

for time of a given frequency component. That is, it describes the correlation between frequency and time.

Where all terms higher than k = 1 are absent, we therefore still have the bandwidth-limited pulse.

We will return to discussing the significance of these phase terms by inspection of a Gaussian spec-

trum at the end of Sec. 3.2.3. The effect of the second and third order terms on the temporal profile will

then be apparent as we analyze resulting profiles and especially when illustrated by the associated Wigner

distribution function, which we introduce presently.

3.2.2 Wigner distribution function

If only to illustrate the effect of dispersion, and for comparison to the longitudinal phase space dis-

tribution of charged-particle beam physics, we turn to the Wigner distribution function (WDF) for time-

frequency domain signal analysis [54–56]. This will provide a 2-dimensional map whose profiles yield
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the one-dimensional temporal and spectral intensities, helpful in visualizing the distribution of flux in the

time-frequency domain.

The WDF W(t, ω) for a signal defined by its complex spectral amplitude Ẽ(ω) (and corresponding E(t)

given by (3.28)) is

W(t, ω) =
1

2π

∫
Ẽ

(
ω +

1
2
Ω

)
Ẽ∗

(
ω − 1

2
Ω

)
e−iΩt dΩ (3.34)

The history and properties of the WDF and other variations of such spectrograms are detailed in [54]. While

we have chosen this only to visualize the ω − t phase space, a few properties are worth noting.

W(t, ω) is found to be everywhere real, though not positive definite. Further, the marginals M(ω) and

M(t) generated by integrating over either t orω, respectively, are found to yield the corresponding intensities

I(ω) and I(t). Finally, the mean values ⟨t(ω)⟩ and ⟨ω(t)⟩ from computing the first-order moments in t and ω

are identically equal to the group delay Tg(ω) and what is referred to as the instantaneous frequency Ωinst(t)

(the latter true when a complex temporal phase is considered). To summarize these:

∫
W(t, ω) dt = I(ω) (3.35a)∫

W(t, ω) dω = I(t) (3.35b)∫
t W(t, ω) dt =

dϕω
dω
= Tg(ω) (3.35c)∫

ω W(t, ω) dω =
dϕt

dt
= Ωinst(t) (3.35d)

3.2.3 Example: the Gaussian pulse

Thus far we have presented analytical definitions for a number of quantities. We now demonstrate them

as a whole by calculating the temporal profiles from spectral components for an actively mode-locked,

Ti:sapph laser output which can be approximated by a Gaussian spectral distribution [57]. First we show

the analytical transform of the transform-limited Gaussian pulse (ϕω = 0). We will then illustrate the impact

of higher order dispersion on such a pulse.
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3.2.3.1 Transform-limited pulse

Consider a plane wave propagating along z with the electric field E directed in x, a purely linear po-

larization state. For free propagation this polarization doesn’t change, as seen by the independence of the

vector components of Eq. (3.26), so that we can instead consider the scalar quantity E. Assume a Gaussian

spectral intensity and corresponding field distribution of the form

I(ω) =
1

2σ
√
π

exp
[
−

(
ω − ω0

σ

)2
]

(3.36)

⇒ |E(ω)| = 1
√

2σ π1/4
exp

[
−1

2

(
ω − ω0

σ

)2
]

(3.37)

for a center frequency ω0 and a root-mean-squared (RMS) spectral field width of σ. The normalization of

(3.36) is chosen so that integrating
∫

I(ω)dω over all frequencies (positive and negative) is one. Note that

this results in a FWHM bandwidth (in intensity) of

∆νGaussian =

√
ln 2 σ
π

(3.38)

and that only I(ω > 0) is measurable. By Eq. (3.9) we then presume that I(−ω) = I(ω). We now compute

what is seen in the time domain.

It’s simple to analytically solve for the transform-limited pulse where ϕω = 0. For the real Gaussian

amplitude of Eq. (3.37) and assuming that for ω0 ≫ σ we can make the approximation

∫ ∞

0
exp

[
−1

2

(
ω − ω0

σ

)2
]

e−iωt dω ≈
∫ ∞

−∞
exp

[
−1

2

(
ω − ω0

σ

)2
]

e−iωt dω (3.39)

we use Eq. (3.12) to find

E(t) =

√
2σ

π1/4 exp
[
−σ

2

2
t2
]

cos(ω0t) (3.40)

I(t) =
2σ
√
π

exp
[
−σ2 t2

]
cos2(ω0t) (3.41)



35

so that the temporal intensity appears as a Gaussian envelope on a carrier wave with frequency ω0. The

envelope has temporal intensity FWHM

∆tGaussian =
2
√

ln 2
σ

(3.42)

Alternatively we can compute the complex profile for only positive frequencies using Eq. (3.14) to yield

the envelope function |Ẽ(t)|2 alone.

Combining ∆t with ∆ν from Eq. (3.38) we find the minimum TBP for a Gaussian spectrum to be

(∆ν ∆t)Gaussian =
2ln 2
π
≈ 0.441 (3.43)

It’s also straightforward to analytically transform a linearly chirped (D2(ω0) , 0) Gaussian pulse and

show dispersive pulse broadening. The new temporal profile is still a Gaussian, but with a modified ampli-

tude and width. In this case it can be shown that the new parameter σt specifying the RMS width in time is

σ2
t =

1
σ2 + σ

2D2
2 (3.44)

so that when GDD dominates, the pulse length grows linearly with the GDD. Where one has the transform-

limited pulse length, the linearly chirped pulse length ∆t′ in this Gaussian approximation is typically written

in the more convenient form [57]

∆t′ = ∆t

√
1 +

(
4 ln 2

D2

∆t2

)2

≈ 2.77
D2

∆t
(3.45)

with the approximation true when the D2 term dominates. To illustrate how this and higher-order dispersion

terms lead to such broadening, we look to the WDF.

3.2.3.2 Optical pulse with higher order dispersion

Consider now the Gaussian spectrum of Eq. (3.37) as we add terms to its complex phase of the form

given in Eq. (3.33). While calculations are all done in terms of ω, we plot in wavelength λ = 2πc/ω which

is easily compared to spectrometer measurements.
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Parameters typical of the output of our Ti:sapph laser are a center wavelength λ0 = 800 nm and ∆λ ≈

10 nm, FWHM. This corresponds to ω0 = 2.355 Prad/s (“peta-radians per second”) and σ = 17.7 Trad/s

(“tera-radians per second”) with the resulting spectral profile shown in Fig. 3.1.
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Figure 3.1: Gaussian intensity profile (Eq. (3.36)) where λ0 = 800 nm and ∆λ = 10 nm.

The form of Eq. (3.33) suggests the scaling of Dk = σ
kk! (when working in frequency units normalized

to bandwidth) to see effects of a comparable scale for each term. Using the spectrum of Fig. 3.1, we take

a complex spectral phase of the form in Eq. (3.33) with only one term Dk = σkk! present at a time. We

compute the resulting complex transient Ẽ(t) by summing over only the positive spectrum aroundω = +ω0.

To quantify the effect on laser pulse length, the RMS pulse width is computed as the second order

moments of the resulting I(t). These are tabulated in Table 3.1 with the corresponding coefficients used.

The Wigner distribution from Eq. (3.34) and temporal profile I(t) by Fourier transform are shown in Fig. 3.2,

with comparison to the transform-limited case. Also plotted as the green overlaid curves in Fig. 3.2 are the

corresponding group delays Tg(λ) computed directly from ∂ϕω/∂ω.

From the identities of Eq. (3.35) we know that summing the WDF over all time to project onto the

spectral axis yields the spectrum. This is indeed the case as the projections of all four plots yield the

spectrum shown in Fig. 3.1. The projections to the time axis yield I(t), which is also verified. Finally, the

mean value in frequency should be Tg(λ) (shown as the green curves), which is the case.

Table 3.1: RMS pulse width σt for a pulse with center wavelength λ0 = 800 nm and ∆λ = 10 nm in the
presence of higher order dispersion terms Dk = σ

kk! (see Fig. 3.2).
Dk used σt [fs]
0 40.0
D2 = 6.40 × 103 fs2 89.5
D3 = 1.09 × 106 fs3 120.7
D4 = 2.46 × 108 fs4 182.0
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Figure 3.2: WDF (tops) and intensity profiles (bottoms) for a pulse with center wavelength λ0 = 800 nm
and bandwidth ∆λ = 10 nm for (a) the transform-limited case, (b) D2 = 6.38 × 103 fs2, (c) D3 = 1.08 × 106

fs3, and (d) D4 = 2.45 × 108 fs4, with RMS pulse lengths shown in Table 3.1. Each WDF is overlayed with
the associated group delay Tg(λ) (green curves).
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Let us inspect these now, one-by-one. For the transform-limited pulse, Table 3.1 shows the minimum

pulse length we expect from Eq. (3.42) of σt = 40 fs (∆ t = 94 fs). The corresponding WDF in Fig. 3.2,

plot (a) appears as a compact vertical ellipse with the time projection also of a Gaussian form. By analogy

to the phase space distribution of particles in accelerator physics, this is the “upright ellipse” in the ω − t

phase space. The inverse relationship between bandwidth and pulse length implies that larger bandwidth

will elongate the ellipse in λ while contracting it in t.

The D1 term has units of time and simply translates the upright ellipse in time with no effect on the

shape. This term is therefore skipped in the illustration.

The second-order coefficient D2, known as the group delay dispersion (GDD) has units of time-squared.

As the derivative of Tg, it describes a linear correlation between frequency and group delay (linear chirp).

Plot (b) shows the result is the equivalent of the ellipse in the analogous longitudinal phase space with spec-

tral shearing of the ellipse in time. We now see how the linear chirp leads to the corresponding broadening

and diluting of the temporal pulse with the width of the stretched Gaussian projection given by Eq. (3.45).

This leading order term is significant for our studies. Firstly, this is the primary source of pulse broaden-

ing. As we will review in Sec. 3.3, propagation of a pulse through simple glasses (such as lenses, polarizers

or vacuum windows) can generate GDD. Therefore where an ultrashort pulse is needed, this GDD must be

quantified and compensated as needed.

Secondly, the tilted ellipse is what is used in EOSD. So far we have only explained that the EOSD

process will encode some other temporal profile we want to measure onto the spectral profile of our linearly

chirped laser pulse. From the tilted ellipse of plot (b) we see more clearly how temporal encoding is

considered equivalently spectrally encoded for the chirped pulse. (This is not precisely true, which will we

will investigate by solution of the wave equation for EOSD in a later section.) Under this approximation,

knowledge of the slope of the ellipse, given by the magnitude of D2, is required to map the measured

spectral modulation to a temporal one.

Third-order dispersion (TOD) D3 is cubic in phase and therefore corresponds to a quadratic chirp.

For broadband laser pulses TOD can be generated, for example, by accumulated intracavity dispersion in

the laser. Plot (c) of Fig. 3.2 shows the effect. The parabolic distribution tends to weight the temporal

distribution to one side. The result is an asymmetric temporal profile with a sharp peak and long tail.

This can yield an apparent temporal FWHM that appears shorter, but we note that the oscillatory tail still

generates a longer RMS pulse length (Table 3.1).
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Aside from complicating our modeling of the optics, TOD can be undesirable when driving nonlinear

effects. This includes frequency doubling and tripling, which we have done with our laser to convert our

infrared pulse to the ultraviolet. As frequency conversion is an intensity-dependent effect, the long tail may

become wasted energy when the weak tail is too weak to drive the harmonic generation.

Finally, though we won’t address it explicitly anywhere else, plot (d) shows the effects of fourth-order

dispersion. As a cubic chirp, we see that it also tends to symmetrically broaden the pulse. However, unlike

the linear chirp of GDD, strong fourth-order dispersion tends to clump the center band of the distribution

about t = 0 while flinging out the spectral tails. Comparing (b) to (d), the result is a temporal profile that

again appears slightly narrower in a FWHM sense, but has a small, much longer symmetric tail in time.

Some sources of higher-order dispersion were suggested here, and of course many others are known

and even used in our experiment. Diagnosis of the laser pulse shape is presented in Sec. 5.3. For now we

turn to reviewing simple material dispersion which we will encounter throughout our calculations.

3.3 Linear, isotropic medium and dispersion

We now consider the well-known dispersion relations for propagation through a dielectric medium and

how we regard them throughout.

When an electromagnetic plane wave encounters the interface between vacuum and the medium, we

know the continuity of the wave equations for E and B at the interface will generate partial transmission

and reflection at the boundary. This is in general dependent on the polarization and angle of incidence

and yields the well-known Fresnel equations (c.f: Sec. 4.6 of [58] or Sec. 7.2 of [8]). At non-normal

incidence this solution also generates refraction, the frequency dependence of the direction of propagating

of the transmitted beam.

We will restrict ourselves to the case of normal incidence so that refraction can be neglected. We further

neglect the effects of partial reflection, assuming no amplitude or phase modulation at the change of medium

so that 100% of the beam is transmitted at both the entrance and exit face of the material.

Propagation through an isotropic medium is then described as the solution for Eq. (3.17) in the case of

an infinite plane wave that generates an isotropic, first-order polarization P(1) directly proportional to the

applied field E. In the notation of Boyd [51]:

P(1)
t (z) = ϵ0 χ

(1)Et(z) (3.46)
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where χ(1) is the linear susceptibility. In the case of the plane wave, the Laplacian simplifies as

∇2E =
∂2E
∂z2 (3.47)

Substituting these into Eq. (3.18)

∂2Ẽω(z)
∂z2 +

ω2

c2 Ẽω(z) = −χ
(1)ω2

c2 Ẽω(z) (3.48)

which can be rewritten as

∂2Ẽω(z)
∂z2 = −(1 + χ(1))

ω2

c2 Ẽω(z) (3.49)

= − ϵ ω
2

c2 Ẽω(z) (3.50)

where we have introduced the (relative) permittivity ϵ, related to the absolute permittivity ϵ, susceptibility,

and refractive index n of the material by ϵ = ϵ/ϵ0 = 1 + χ(1) = n2.

This has the same plane wave solution as before, but now with a new wavenumber k2 = ϵω2/c2 =

n2ω2/c2. Should n be constant, the wave would simply propagate through the medium at a different rate as

it would in vacuum. However, where the response of the material is frequency dependent, as is typically the

case, we find the dispersion relation k(ω) = n(ω)ω/c. This will distort the temporal profile as it propagates.

Again following the treatment of Sec. 3.2 with our wave incident on the medium at z = 0, but with

frequency-dependent k(ω), we find the solution

Ẽω(z) = Ẽω(0)eik(ω)z (3.51)

Real Et further implies here that n(−ω) = −n(ω) (with non-dissipative media) so Ẽω = Ẽ
∗
−ω. The evolution

of Et(z) along z will again be found from Eq. (3.8).

Et(z) =
1
√

2π

∫ ∞

−∞
Ẽω(0)eik(ω)ze−iωtdω (3.52)
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so that the right hand side is defined entirely by the wave incident at z = 0. If the medium has thickness

L and we still neglect boundary effects, the profile of the emerging wave will then be given by Et(L).

Expressing Ẽω(0) by its amplitude and phase we have

Et(L) =
1
√

2π

∫ ∞

−∞
Eω(0) exp

{
i
[
ϕω(0) + k(ω)L

]}
e−iωtdω (3.53)

where we see that the material contributes only a frequency- and thickness-dependent phase shift.

For an arbitrary refractive index the above does not reduce neatly as it did before because of the

frequency-dependence of k(ω). The resulting signal distortion will have significant impact later in the

context of EOSD. We satisfy ourselves for now by considering our model Ti:sapph pulse traversing a thick

piece of glass.

Again, as our laser pulse operates at center frequency ω0 with a finite bandwidth σ ≪ ω0, we perform

a Taylor expansion of both ϕω and k(ω)L. We then see that the derivatives of the wavenumber k will simply

be added into the initial coefficients in the expansion of ϕω.

The constant term and first derivatives will describe the phase shift from propagating through the mate-

rial at a modified group velocity vg = c/n(ω0). Discarding these and to only second order,

Et(L) ≈ 1
√

2π

∫ ∞

−∞
Eω(0) exp

{
i
[
ϕω(0) +

L
2

(ω − ω0)2 ∂
2k

∂ω2

∣∣∣∣∣
ω0

]}
e−iωtdω (3.54)

where ∂2k/∂ω2 is the group velocity dispersion (GVD) [57], the GDD accumulated per unit length. Ex-

pressed by the refractive index, material dispersion for a thickness L then yields an additional D2 to the

phase as

D2(ω0) =
(

2
c
∂n
∂ω

∣∣∣∣∣
ω=ω0

+
ω

c
∂2n
∂ω2

∣∣∣∣∣
ω=ω0

)
L (3.55)

so that we see the resulting pulse after a length L in a medium is approximately the transform of the initial

pulse with an additional linear spectral chirp D2. Under the Gaussian pulse approximation and assuming

that ϕω(0) = 0, we can then use Eq. (3.45) to estimate the pulse length with this additional dispersion.

The index is typically specified in the literature by Sellmeier relations given as a function of wavelength.

Using λ = 2πc/ω, we then rewrite D2 as

D2(λ) =
(
λ3

2πc2

∂2n
∂λ2

∣∣∣∣∣
λ=λ0

)
L (3.56)
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In conjunction with an optical element’s index relation, Eq. (3.56) and (3.45) combined give a way to

quickly estimate the broadening of a laser pulse after propagating through the given material. The strength

of the added chirp will depend on the curvature of the index of the glass and the thickness being traversed.

For example, we frequently make use of 25-mm thick Glan polarizing prisms [58] as high-quality

polarizers that are made of calcite. We may want to verify that this will have a negligible impact on pulse

broadening.

Calcite is a birefringent material exhibiting two indices of refraction, something that will be discussed

in some detail in the next section. In a Glan prism, the transmitted wave propagates along the natural

extraordinary axis in the polarizer with index ne [58]. To calculate D2 we use material properties given by

the Sellmeier relations with coefficients for ne in calcite provided by [59] as

ne(λ) = 2.18438 +
8730.9

λ2 − 10180
− 2.4411 × 10−9λ2 (3.57)

when λ is given in nanometers. The resulting ne and D2/L in the region of λ0 = 800 nm are shown in

Fig 3.3.
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Figure 3.3: Extraordinary index ne (top) and group velocity dispersion D2/L (bottom) for a calcite crystal.



43

The index shows only a very small change over the bandwidth of the laser of less than a part per thousand

with a very slight curvature. At 800 nm this yields a GVD of 39.7 fs2/mm so that for our 25 mm polarizer we

have D2 = 991.6 fs2. Using our 10 nm FWHM Gaussian laser pulse (Fig. 3.1) with ∆t = 94.2 fs, Eq. (3.45)

gives an broadened pulse width of ∆t′ = 98.6 fs, a broadening of only 4.4 fs, in good agreement with

numerical integration of (3.54) and typically of minor effect.

3.4 Anisotropic medium and birefringence

So far we have considered free propagation in vacuum as well as in other isotropic media with a

frequency-dependent response. While dispersion in the latter case can distort the temporal profile through

changes in the spectral phase, the polarization state (the direction of E) remains unaltered.

We now consider a material with a first-order (in induced polarization) anisotropy. In this case the

polarization can be modified. Birefringent behavior will be described while framing our notation in a

manner that will be useful as we eventually proceed to second-order nonlinearities and EOSD.

The more general form of the first-order induced polarization is given by

P̃ω = ϵ0 χ
(1)
ω · Ẽω (3.58)

where χ(1)
ω is the relative permittivity tensor of rank 2, also dependent on ω. This has geometric implications

as an applied field along a given axis can now be mapped into a field along a different direction.

Returning to Maxwell’s equations, Eq. (3.15) is now

∇ × ∇ × Ẽω(r) − ω
2

c2 Ẽω(r) =
ω2

c2 χ
(1)
ω · Ẽω(r) (3.59)

∇ × ∇ × Ẽω(r) =
ω2

c2 ϵ
(1)
ω · Ẽω(r) (3.60)

with relative permittivity tensor ϵ(1)
ω = I + χ(1)

ω where I is the identity matrix. If we still take solutions with

spatial dependence of the form

Ẽω(r) = Ẽω exp (i k · r) (3.61)
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then the gradient operator becomes ∇ = i k so that

−k × k × Ẽω =
ω2

c2 ϵ
(1)
ω · Ẽω (3.62)

Combining (3.1) and (3.6) we also find

k ·
(
ϵ(1)
ω · Ẽω

)
= 0 (3.63)

Note that while Eq. (3.1) tells us that k will be perpendicular to D, (3.63) shows that k is only in general

perpendicular to E if ϵ(1)
ω is proportional to the identity matrix, that is to say the medium is isotropic. In that

case the problem reduces to the one presented in the previous section.

In the coordinate basis of an anisotropic crystal, ϵ(1)
ω can be written [51, 52]

ϵ(1)
ω =


n2

x 0 0

0 n2
y 0

0 0 n2
z

 (3.64)

where ni are the indices of refraction along a given direction. For an isotropic medium then, n2
x = n2

y = n2
z =

n2 with the solution already given. In the case where none are equal, the material is referred to as biaxially

birefringent [52]. For our present purposes we consider the classic uniaxial crystal with n2
x = n2

y = n2
o and

n2
z = n2

e where no and ne are called the ordinary and extraordinary indices of refraction so that ϵ(1)
ω is

ϵ(1)
ω =


n2

o 0 0

0 n2
o 0

0 0 n2
e

 (3.65)

For uniaxially birefringent materials, the response of electric dipoles along one direction of the crystal

is different than the other two. This can be related to the crystal structure itself and is visualized in Fig. 3.4

with the crystal described by (3.65) drawn in its own coordinate basis, extraordinary axis oriented along z.

Also shown is the presence of an applied field E in the x−z plane incident at an angle θ from the z axis. This

is shown in terms of components Ep and Es where Ep is the component polarized in the plane of incidence

and Es polarized perpendicular to the plane of incidence.
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Figure 3.4: Geometry for a field E = Es + Ep incident at angle θ to the extraordinary axis of a uniaxial
crystal with extraordinary index ne an ordinary index no in the coordinate basis of the crystal with ne oriented
along z. Ep and Es are the components of E polarized parallel and perpendicular to the plane of incidence,
respectively.

With this geometry, we consider the solution of (3.62) for the field shown. Inserting (3.65) and rear-

ranging

[
(k × k×) +

(
ω2

c2 ϵ
(1)
ω ·

)]
Ẽω = 0 (3.66)

ω2n2
o

c2 − k2
x − k2

z kxky kxkz

kxky
ω2n2

o
c2 − k2

x − k2
z kykz

kxkz kykz
ω2n2

e
c2 − k2

x − k2
y




Eω,x

Eω,y

Eω,z

 = 0 (3.67)

where ki denotes the cartesian component of a vector. Nontrivial solutions to this equation are given when

the determinant of the matrix of coefficients shown is equal to zero. Computing the determinant and col-

lecting terms we find k2
1 + k2

2 + k2
3

n2
o

− ω
2

c2

 k2
1 + k2

2

n2
o
+

k2
3

n2
e
− ω

2

c2

 = 0 (3.68)

From Fig 3.4 we see that the components of k are (k1, k2, k3) = (−k sin θ, 0, k cos θ) so that we can simplify

(
k2

n2
o
− ω

2

c2

) (
k2 cos2 θ

n2
o
+

k2 sin2 θ

n2
e
− ω

2

c2

)
= 0 (3.69)
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We see there are now two solutions in k2. One simply yields k2 = ω2n2
o/c

2, indicating a solution with an

index of refraction equal to that of the ordinary index. The other we write using k2 = ω2n′2e /c
2 as

1
n′2e (θ)

=
cos2 θ

n2
o
+

sin2 θ

n2
e

(3.70)

This is a modified index of refraction. Using these two solutions in the eigenvalues k2 one can further

compute the eigenvectors of the matrix to determine k. One finds [52] that the solution n = no corresponds

to the wave Es in Fig. 3.4, called the ordinary wave. The solution given by (3.70) is the extraordinary wave

and is valid for the component with the polarization Ep. It travels with an effective index of refraction that

is a function of the angle between the angle of incidence and the extraordinary axis, also referred to as the

optic or ĉ-axis of the crystal, where ĉ = ẑ as drawn in Fig. 3.4.

Note that if the wave is incident along ĉ, θ = 0 ⇒ n′e = no, and when the extraordinary wave travels

perpendicular to ĉ, θ = 0⇒ n′e = ne.

Also, the solution above with the beam incident at an angle −θ to the optics axis z, is equivalent to

having the beam normal with the crystal basis rotated by θ. In this way we can adjust the index of the

extraordinary component by instead fabricating a crystal with the faces cut at the angle θ that adjusts n′e to

suit our application. This way an extraordinary wave incident normal to the surface of the angle-cut crystal

will see the designed n′e.

In solving for the components k, one finds that the asymmetry of the crystal in x−z generates a coupling

in these two coordinates. The result is that the power flow for our extraordinary wave Ep in fact propagates

at what is referred to as the walk-off angle ρ to the wave vector [52, 57] and is given by

tan ρ = n′2e (θ) sin θ cos θ
[

1
n2

e
− 1

n2
o

]
(3.71)

As noted in [52], for calcite (strong birefringence) this is typically only a few degrees so that when using

very thin crystals we assume the spatial walk-off is not significant.

That the behavior of uniaxial crystals can modify the phase of orthogonal polarization directions allows

one to fabricate polarizing optics.
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3.4.1 Polarization optics and Jones vectors

In this section we review the usual Jones calculus notation for the description of polarization states [58]

and illustrate the use of uniaxial birefringence in the construction of polarizing optics. We will use this in

the context of EOSD which is found to be, in part, a polarization-modifying effect.

In discussing the polarization of monochromatic plane waves, we note that in principle the direction of

Ẽω is only constrained to the transverse plane. The Jones vector formalism allows one to keep track of the

accumulated phase differences between perpendicular components.

For a given frequency component of a plane wave, such as one from our laser, the transverse components

in the laboratory x − y frame can be decomposed in general Jones vector form as

Ẽω(z, t) = Ẽωei (kz−ωt) (3.72)

=

 Exeiϕx

Eyeiϕy

 ei (kz−ωt) (3.73)

where Ei are the field amplitude in the i direction and ϕi the complex phase of that component. Rearranging

Ẽω(z, t) =

 1

Ey/Exei(ϕy−ϕx)

 Exei (kz−ω t+ϕx) (3.74)

=

 1

Rei ∆ϕ

 Exei (kz−ω t+ϕω) (3.75)

where we have defined the phase difference ∆ϕ = ϕy − ϕx and amplitude ratio R = Ey/Ex.

When R = 0 and ∆ϕ = 0 we have linear polarization in x, an electric field that oscillates in the x

direction as it propagates along z. When R = 1 and ∆ϕ = π/2 we have circular polarization. The electric

field vector rotates around z once per wavelength λ as it propagates in z. For arbitrary ∆ϕ and R we have

elliptical polarizations.

Birefringent materials such as those discussed in the previous section allow us to modify the relative

phase of these orthogonal components relative to the orientation of the crystal’s optic axis. For example,

if we cut a uniaxial crystal so that the extraordinary axis lies along y and ordinary along x, then Ey and Ex
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will propagate with indices of refraction ne and no, respectively. While in the crystal the phases will vary

as ϕ = kz = 2πnz/λ so that after a distance L through the material we get the retardance Γ = ∆ϕ(L) [58]

Γ =
2πL∆n
λ

(3.76)

with ∆n = ne − no. If we choose the length to be

L =
λ

4
1
∆n

(3.77)

then Γ = π/2, a quarter cycle of retardance. A slab such as this is therefore called a quarter wave plate. The

effect it has on the relative phases of the polarization can then be related by a 2D Jones matrix operator in

the coordinate basis of the crystal as

Γ =

 ei Γ/2 0

0 e−i Γ/2

 (3.78)

with which we can define the new relative polarization state by the operation

E′ = ΓE (3.79)

This assumes that E is defined in the basis of the crystal. When the crystal is rotated, this is equivalent to a

counter rotation of E. We can then apply the coordinate transform

Rθ =

 cos θ − sin θ

sin θ cos θ

 (3.80)

that rotates E into the basis of Γ, then back to the lab frame as

E′ = RθΓR−1
θ E (3.81)

We see from the form that this is equivalent to a coordinate transform of the Jones matrix in its own basis

to that of the laboratory.
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For the Γ = π/2 quarter wave plate set to an angle θ = 45◦ and a wave incident polarized linearly in x

with unit magnitude, Eq. (3.81) yields

E′ =

 cos θ − sin θ

sin θ cos θ


 eiπ/4 0

0 e−iπ/4


 cos θ sin θ

− sin θ cos θ


 1

0

 (3.82)

=
1
√

2

 1 ei π/2

ei π/2 1


 1

0

 (3.83)

E′ =
1
√

2

 1

ei π/2

 (3.84)

which with reference to Eq. (3.75) is the form of circularly polarized light. The quarter wave plate as a

circular polarizer will be of use in our apparatus.

Another optic we will use is the beam-displacing polarizing prism shown in Fig. 3.5. Where a wave

plate is a thin crystal, the thick beam-displacing polarizer makes use of the walk-off relation (3.71) to

spatially separate the incoming polarizations, as illustrated in Fig. 3.5.

Figure 3.5: Geometry of a beam-displacing prism of length L and crystal cut angle θ illustrating the use of
birefringent walk off to separate polarization components into parallel propagating beams. The angle ρ is
related to θ by Eq. (3.70) and (3.71).

The beam-displacing prism we used is Thorlabs part number BD27. This is a calcite prism with length

L = 28 mm. For calcite at our laser wavelength of 800 nm, no = 1.6487 and ne = 1.4821 [59]. The crystal

cut angle θ is not specified. However, the walk-off angle ρ given by (3.71) is generally maximized for a
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broad range of wavelengths when θ = 45◦. Using these, we find that ρ = 6.11◦ so that the spatial separation

of the polarized beams emerging from the prism is d = 3.0 mm at 800 nm.

In this chapter we have illustrated the notation and methodology of some linear optics employed. From

here we can proceed with describing the optical setup used for EOSD, the solution of Maxwell’s equations

for the nonlinear EOSD problem as it relates to our configuration, and how the recovered signal relates to

the measurement of the transient signal from the electron beam.



CHAPTER 4

ELECTRO-OPTIC SPECTRAL DECODING

In this chapter we begin with a brief introduction to the technique chosen to measure the transient signal

from the electron bunch. With this in hand, we provide further details on some practical matters of the optics

installation. We will then return with a more complete description of the measurement process which then

identifies additional distortions that may be encountered in our measurements.

4.1 Qualitative description of electro-optic spectral decoding

As previously stated, future collider applications and present high-gradient laser plasma wakefield ac-

celerators and other photoinjector-based accelerators such as free electron lasers operating with picosecond

bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This has

led to significant advancements in the field of what is referred to in the literature as electro-optic sampling

over the last ten years [30, 60–71].

These methods allow the probing of diagnostic light such as coherent transition radiation (Sec. 2.4) [30,

69] or the bunch wakefields (or “velocity fields”) [61, 63] with sub-picosecond time resolution. Primary

techniques are based on encoding a THz-regime transient from the electron beam onto the polarization of

either the spectral or spatial components of a single broadband Ti:sapph laser pulse. This is done by mixing

the laser pulse and signal from the beam in an electro-optically active crystal. Potential applications in

shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of the bunch

distribution.

While a number of approaches are available, we have chosen to employ the variant known as electro-

optic spectral decoding (EOSD) with the process illustrated schematically in Fig. 4.1 [30, 60, 65, 68, 69].

Proceeding from left to right, we begin with our ultra-short laser pulse and transient signal ET Hz(t) from

the beam with the latter, in principle, proportional to the longitudinal distribution of the bunch ρ(t) that

we aim to measure. The linearly polarized laser pulse is stretched with a strong linear chirp to provide a

correlation in the time-frequency domain (c.f. Sec. 3.2.3.2). The laser probe and signal from the beam are
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then co-propagated through a nonlinear, electro-optically active crystal (EO crystal). From the perspective

of the laser pulse, the effect in the crystal can be regarded for our present discussion as a time-dependent

wave plate with a retardation proportional to the externally applied ET Hz(t). Assuming that the laser and

signal remain perfectly velocity matched (no dispersion) through the crystal, this results in a time-dependent

retardation Γ(t) ≪ 1 in the polarization ellipse along the laser pulse.

Figure 4.1: From left to right, a step-by-step diagram of the electro-optic spectral decoding process illus-
trating the mixing of the THz pulse from the accelerator modulating the polarization of a chirped laser pulse
with subsequent spectrally resolved, polarization-analyzing optics.

The modulated pulse is then sent through a quarter wave plate oriented to act as a circular polarizer. This

is found to enable resolution of the sign of the modulation on the pulse as well as improve the sensitivity of

the measurement [62, 69].

With the proper crystal orientation and following a similar treatment of the Jones vectors as seen in [30,

60, 62], the resulting intensities of the horizontal and vertical components at this point can be found to be

Ix(t) =
1
2
{1 − sin [Γ(t)]} Ilaser(t) (4.1)

Iy(t) =
1
2
{1 + sin [Γ(t)]} Ilaser(t) (4.2)

where Ilaser(t) is the initial temporal profile of the laser pulse and we assume the incident laser pulse to be

linearly polarized in x.

We are then left to resolve this now-modulated laser pulse in measurable terms. In the EOSD approach

the change in the temporal profile is considered equivalent to a spectral modulation due to the linear cor-
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relation of the spectral and temporal components of the pulse [60]. If one has sufficient information about

the initial spectral amplitude and phase, one can find the linear map of wavelength to time from the group

delay tg(λ).

In this sense, (4.1) becomes

Ix(λ) =
1
2

{
1 − sin

[
Γ(tg[λ])

]}
Ilaser(λ) (4.3)

Iy(λ) =
1
2

{
1 + sin

[
Γ(tg[λ])

]}
Ilaser(λ) (4.4)

Therefore, we then proceed through an analyzing system that probes the change in the polarization state of

the spectral profile.

Previously in spectral encoding experiments only one of the two polarizations have been measured.

However, in multi-shot experiments it was shown that by recording the intensity of both polarizations one

can perform a balanced measurement, improving the signal-to-noise ratio and allowing the correction of

shot-to-shot fluctuations in the laser intensity.

We perform a similarly balanced measurement by using a polarization-resolving spectrometer system

consisting of our beam-displacing prism (Fig. 3.5) and a near-IR imaging spectrometer [72]. This allows

one to simultaneously measure the spectra of both polarization components.

If we take the difference over the sum of the measured spectra, we then find from (4.3)

Ix(λ) − Iy(λ)
Ix(λ) + Iy(λ)

= − sin
[
Γ(tg[λ])

]
(4.5)

which is, to first order, proportional to −Γ(t). By mapping the measured signal from wavelength to a time

axis via tg(λ) we can then determine Γ(t) ∝ ET Hz.

For completeness we note that a similar analysis in the absence of the quarter wave plate yields

Ix(λ) − Iy(λ)
Ix(λ) + Iy(λ)

= cos
[
Γ(tg[λ])

]
(4.6)

so that the measured signal is approximately 1 − Γ2(t), an even function in Γ(t) and therefore not sign-

resolving (a loss of phase information).

In these broad strokes we have not yet addressed a number of other known effects that occur in the

nonlinear crystal. We do have an idea of the hardware necessary to perform the measurement, however. We
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will describe this before returning to a more thorough treatment of the interaction between the probe and

signal in the nonlinear crystal.

4.2 Titanium-sapphire laser layout

Our first requirement is a titanium-sapphire laser which provides the requisite, broadband probe pulse.

As we describe the laser and layout of the optical systems, we remain mindful of alternately using the

Ti:sapph to generate ultra-short UV pulses for use in driving beam generation at the accelerator (Sec. 2.6).

The new titanium-sapphire (Ti:sapph) laser system is a commercially available Spitfire Pro XP regen

seeded by a Tsunami oscillator. These are respectively pumped by a 30 W, Q-switched Empower laser and 5

W continuous-wave Millennia Pro diode laser, respectively, with both pumps operating at 532 nm. The full

system, produced by Newport Corporation, Spectra Physics division, produce 800-nm pulses with output

parameters summarized in Table 4.1.

Table 4.1: Optimized Ti:sapph laser parameters.
Oscillator center wavelength 800 nm
Oscillator repetition rate 81.25 MHz
Oscillator pulse energy 14.5 nJ
Oscillator max bandwidth 15 nm (FWHM)
Amplified repetition rate 1 kHz
Amplified pulse energy 3 mJ
Amplified max bandwidth 12 nm (FWHM)

The system is supplemented with a Dazzler produced by Fastlite [73], an acousto-optic programmable

dispersive filter (AOPDF) for shaping of the IR pulse. This allows one to directly manipulate the spectral

phase and amplitude coefficients (Eq. (3.32)-(3.33)) of the Ti:sapph laser pulse.

The layout of the laser system is shown in Fig. 4.2. The seed laser output passes a 75% reflective,

25% transmissive pellicle beam splitter (BS). The reflected beam is used for optional timing feedback (see

Sec. 5.2.3) and other diagnostics. The transmitted beam is passed as the amplifier seed.

Where the Ti:sapph system is used as the photoinjector drive laser, a frequency tripler [74] converts

the 800 nm IR output of the amplifier to the UV at 266 nm, as required to maximize photoemission at the

Cs2Te photocathode. The tripler consists of a 300-µm β-barium borate (BBO) doubling crystal, a calcite

delay-compensation crystal, 800-nm half-wave plate, then the final 150-µm BBO tripling (ω + 2ω → 3ω)
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crystal. In this configuration and using the peak amplifier output, 10% conversion efficiency is realized

producing up to 300-µJ UV pulses.

Figure 4.2: Schematic of the modified optical layout for the Ti:sapph laser system including oscillator
pick-off beam splitter and pulse shaper.

The amplified IR output was chosen for EOSD where a strongly chirped IR laser pulse will be required.

EOSD occurs on a single-shot basis with the signal from the beam modulating the spectrum of the laser

pulse. To see the entire pulse, assuming that the relative timing of the beam and laser are perfectly stable,

we must at least stretch the laser to envelop the full duration of the signal, on the order of 1 ps or more.

The amplifier’s grating compressor in combination with the Dazzler can easily produce the required

ps-scale chirp. Also, the regen selects only a 1-kHz pulse train (or less with gating) for amplification.

This provides suppression of the seed laser’s 81.25-MHz repetition rate to the accelerator’s 1 Hz. This is

advantageous for our single-shot measurements: concerns about the EOSD spectrometer camera integrating

many pulses are mitigated as we can easily gate down to only laser pulse per accelerator cycle.

To accommodate concurrent delivery of the Ti:sapph and the existing Nd:YLF and HeNe alignment

lasers to the accelerator vault, they are combined before transport; see Fig. 4.3. The combined beams are

then sent into an optical transport line to deliver pulses from the A0PI laser lab to an optical breadboard

at the photocathode in the accelerator tunnel 20 m away. The transport line consists of five mirrors with a

double high-reflectivity (HR) coating at 800 nm and 266 nm and with a 5-m imaging lens at its midpoint.

4.3 Optical apparatus for EOSD

Next we will describe optics specific to EOSD. This includes the geometry of the EOSD optics used to

combine our probe and signal pulses at the nonlinear crystal, then the analyzing optics used to determine

the resulting modulation of the polarization modulation in the frequency domain.
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Figure 4.3: Optical layout used to combine the Ti:sapph UV, Ti:sapph IR, Nd:YLF UV and HeNe alignment
laser before transport to the accelerator tunnel. Polarization of the two UV beams are controlled indepen-
dently using the two half-wave plates and combined in a UV polarizing cube. A high-reflectivity (HR)
800-nm mirror combines the IR with the HeNe (632 nm) alignment lasers then joined with the UV beams
upon transmission through the HR266 mirror.

Additional optics used to aid in adjusting the relative time of arrival of the laser pulse at the crystal to

match that of the CTR pulse are also necessary. While we can make timing adjustments to the laser using

relative phase controls detailed later (Fig. 5.1), we are attempting to overlap two events of 1-ps duration

with each occurring only once per second. Scanning of the 1-ps EOSD window over the full 1-s range is

impractical. We therefore use a three-stage process to narrow this down in large increments using optics

overlaid with those used for EOSD.

The arrangement for the relative timing makes use of the OTR, which we have noted is significantly

weaker than the CTR emitted from the target (Sec. 2.4). Because of this, we use the Nd:YLF system as

the drive laser for the photoinjector in these experiments. This allows the generation of a macropulse train

comprised of several tens of electron bunches with a 1-MHz spacing. In this way, existing diagnostics such

as the streak camera can easily detect the integrated power of the bunch train to assist in narrowing down

the time of arrival.

The laser pulses enter the accelerator bunker at the RF gun (Fig. 2.1). At this point the relative timing

is verified to the sub-ns scale using a fast photodiode mounted at the photocathode. The drive laser is then

directed to the photocathode for beam generation. The IR pulse is split from the combined laser path and

propagates along an imaging system mounted to the tunnel wall to the EOSD breadboard, shown in Fig. 4.4,

mounted downstream near diagnostic cross X24.

The breadboard is configured in a two-level arrangement. TR from cross X24 (Fig. 2.6) can be directed

by existing insertable mirrors to either level. In the lower level, the OTR from the beam is combined with
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light leakage from the laser’s periscope and sent to the streak camera (Fig. 2.1). This is used to further

reduce the uncertainty in the time of arrival from the ns scale to the ps scale.

Analyzing

Optics

Periscope

ZnTe

Parabolic

mirror

X24 TR

Probe laser

To streak

camera

Broadband

splitter

Annular mirror

Glan laser

polarizing cube

Wire mesh

polarizer

Collimating lens

Figure 4.4: Two-level optical layout of dual-purpose EOSD breadboard. Lower level (blue) combines laser
leakage from periscope with OTR from beam (Fig. 2.6) to be sent to the streak camera. Upper level (red)
combines laser pulse with CTR pulse, focusing collinear beams onto the ZnTe crystal. The modulated laser
pulse is then collimated and sent to the analyzing optics.

We first account for a roughly 3.5 ns optical path difference between the laser’s path along the wall and

the beam’s propagation down the beamline. The streak camera then enables us to walk in the time delay

of the laser to overlap with the streak image of the OTR. This is straightforward as in its widest temporal

range the streak camera covers ∼2 ns. As the two signals get closer, one can narrow the sweep range to

improve the temporal resolution down to the ps level. At this point we know the TR and laser probe are

synchronized at the OTR/laser beam combiner on our EOSD breadboard in Fig. 4.4.

On the second level we combine the optical paths of the CTR from X24 with the laser probe arriving

from the vertical periscope using an annular mirror. The CTR first passes a wire mesh polarizer to ensure

a pure horizontal polarization state of the signal at the crystal. The laser passes a high-quality polarizing

prism to ensure pure vertical polarization.

The combining mirror has an inner diameter of 5 mm to permit transmission of the laser probe. This

is designed to fit within the weak hole in the reflected CTR wavefront (Sec. 2.4) which is estimated to be

a bright ring with diameter of ∼10 mm. The two are then collinearly focused by the parabolic mirror onto
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a 1-mm thick, zinc-telluride (ZnTe) electro-optic crystal. The modulated laser pulse is then re-collimated

and sent to the EOSD analyzing optics.

The crystal is the point at which our signal and probe must overlap in time. Adjusting for another

relative optical path difference for the TR and laser of about 270 ps from the previous synchronization

point to the crystal, one can scan the laser timing just a few picoseconds until a measurable EOSD signal is

observed in the spectrometer. See Fig. 4.5.

Figure 4.5: EOSD analyzing optics detailing the polarization-resolving spectrometer configuration. Polar-
ization component perpendicular to page is displaced 3 mm into the plane shown.

4.4 Quantitative analysis of electro-optic spectral decoding

With all of the optics defined, we can now present a more quantitative explanation of the EOSD system

and, in particular, the response of the EO crystal. How this leads to a mixing of the CTR pulse in the THz

regime with the laser pulse in the near IR is found by expanding on the solutions of Chap. 3 to include the

second-order, nonlinear polarization term. We can then discuss in detail the effect on the probe laser pulse

and how the analyzing optics recover the THz waveform.

4.4.1 Form of the second-order polarization coupling

Continuing the expansion of the induced polarization to second order we now find [51, 52]

Pt = ϵ0 χ
(1) · Et + ϵ0 Et · χ(2) · Et (4.7)
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where the final term is a tensor product related to χ(2), the second order susceptibility, representing the

coupling of the induced polarization to the square of the field. The tensor χ(2) is now of rank 3, describing

how two components of an applied field map to the those of the induced polarization P. As these are

typically given in terms of the coupling strengths of eigenmodes in the material, this is considered in the

frequency domain.

We restrict ourselves for now to an applied, real driving field E that is the sum of two monochromatic

waves at different frequencies ω1 and ω2

E(t) = Ẽ1e−i ω1 t + Ẽ2e−i ω2 t + c.c. (4.8)

As the second-order induced polarization is of a higher-order tensor nature, it is helpful to diverge from our

previous notation and instead write it in component form as

P(2)
i (t) = ϵ0 χ

(2)
i jk E j(t) Ek(t) (4.9)

where we use the Einstein implied summation over repeated indices convention to express the dot products.

Inserting (4.8) and expanding we find [51]

P(2)
i (t) = ϵ0 χ

(2)
i jk [Ẽ1, j Ẽ1,k e−2iω1t + Ẽ2, j Ẽ2,k e−2iω2t (4.10)

+ 2Ẽ1, j Ẽ2,k e−i(ω1+ω2)t + 2Ẽ1, j Ẽ∗2,k e−i(ω1−ω2)t

+ Ẽ1, j Ẽ∗1,k + Ẽ2, j Ẽ∗2,k] + c.c.

The product yields a polarization with a number of frequency components. Writing these individually as

P(2)
i (t) =

∑
n

P̃i(ωn)e−iωnt + c.c. (4.11)
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the allowed components P̃i(ωn) are

P̃i(2ω1) = ϵ0 χ
(2)
i jk(2ω1;ω1, ω1)Ẽ1, j Ẽ1,k (SHG) (4.12a)

P̃i(2ω2) = ϵ0 χ
(2)
i jk(2ω2;ω2, ω2)Ẽ2, j Ẽ2,k (SHG) (4.12b)

P̃i(ω1 + ω2) = 2ϵ0 χ
(2)
i jk(ω1 + ω2;ω1, ω2)Ẽ1, j Ẽ2,k (SFG) (4.12c)

P̃i(ω1 − ω2) = 2ϵ0 χ
(2)
i jk(ω1 − ω2;ω1,−ω2)Ẽ1, j Ẽ∗2,k (DFG) (4.12d)

Pi(0) = ϵ0 χ
(2)
i jk(0;ω1,−ω1)Ẽ1, j Ẽ∗1,k

+ ϵ0 χ
(2)
i jk(0;ω2,−ω2)Ẽ2, j Ẽ∗2,k (OR) (4.12e)

where we have explicitly added the dependence of χ(2) on the frequencies ω1 and ω2 of the input waves

to the output frequency ω3 as χ(2)(ω3; ω1, ω2). As done by Boyd, the various components are labeled by

their corresponding phenomena. The first two are second-harmonic generation (SHG), output waves that

are at twice the frequency of the inputs. Similarly we have sum-frequency generation (SFG) and difference-

frequency generation (DFG). Finally is optical rectification (OR), a DC bias signal.

Note that for all of these the real monochromatic wave in time is composed by adding its complex

conjugate, consistent with (4.11). As the OR signal is already real, adding its complex conjugate simply

doubles the total OR signal, in agreement with the expression given by Boyd [51].

Eq. (4.12) shows in a very general way the behavior of the second-order susceptibility tensor and how

it relates the spatial and spectral components of the incident wave(s) to the generation of a secondary wave

via polarization of the crystal. The polarization couplings and the allowed frequency transitions are found

to be related to the arrangement and allowed energy transitions of electric dipoles in a given crystal.

Concentrating first on the frequency dependence, of particular interest for our purposes are the behavior

of zinc-blende structure materials such as zinc-telluride (ZnTe) or gallium-phosphide (GaP) which allow

transitions of the near IR broadband laser pulse to and from the broadband THz regime. Specifically, DFG

of the IR components to the zero-offset THz regime (ωIR,1 − ωIR,2 → ωT Hz) are allowed, as well as SFG

and DFG of the THz regime to generate IR (ωIR,1 ± ωT Hz → ωIR,2).

The first of these is frequently referred to as “optical rectification” in the literature as it converts the

laser with center frequency in the near infrared down to an optical pulse with effectively zero optical bias.

The intense, broadband laser can therefore generate ultrashort pulses of THz light [75].



61

The second is the coupling of interest for our application as it can describe a change to the frequency

and/or polarization content of a laser pulse in the presence of an externally applied THz field. In the

description given by Gallot and Grischkowsky [76], the process is treated in the frequency domain as

the sum- and difference-frequency generation of the THz field with the laser under the assumption that

neither the laser nor signal are depleted. This has the advantage of allowing straightforward analysis of the

distortion of the signals due to dispersion in the crystal [66, 69, 77].

We therefore assume that the OR portion allowing the laser to be converted to an additional THz wave

remains negligible compared to the signal we’re measuring over the full length through the crystal. Further

we make the undepleted-pump approximation [51] for the THz signal while still allowing for dispersion.

These combined assume the spectral amplitude of the signal does not change, though its spectral phase can

change with z depending on the index of refraction, as discussed in Sec. 3.3. In this way, the variation in z

of the spectral components for our THz signal linearly polarized in y is written (Eq. (3.51))

ẼT Hz
2 (ω, z) = ẼT Hz

2 (ω, 0)eik(ω)z (4.13)

with the other polarization components ẼT Hz
1 = ẼT Hz

3 = 0.

Neglecting the OR term means that in terms of frequency coupling we only need to consider the SFG

and DFG terms with ωIR,1 ± ωT Hz → ωIR,2. Assuming both couplings are constant in frequency over the

range of both the signal and probe spectra, we write it in component form as simply χ(2)
i jk in the laboratory

frame and can neglect all the other frequency couplings.

Finally, we will allow for the laser polarization to change by studying a solution that admits a polar-

ization that can in general have an arbitrary orientation. To do this in a form familiar from our earlier

formalism, we next simplify the form of the tensor components χ(2)
i jk in the lab frame.

On our optical breadboard for EOSD 4.4 we mix a horizontally polarized THz signal from the electron

bunch with our vertically polarized laser collinearly onto a 1-mm thick ZnTe crystal. ZnTe is of the zinc-

blende structure (class 43m), illustrated in Fig. 4.6, left.

The crystal is cut so it surfaces lie in the ⟨110⟩ plane of the crystal, that is, a 45 ◦cut. We will orient

our lab system so that this is across the surface normal in the direction n̂ = ( 1√
2
, 0, 1√

2
) with our wave

then propagating along the same direction. The view along the n̂ propagation direction is shown in Fig. 4.6,

right.
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Figure 4.6: Left: The structure of ZnTe in its own coordinate basis showing arrangement of cubically
arranged anions (red) and cations (yellow) with bonds (blue). Right: View of lattice along propagation
direction for ⟨110⟩-cut ZnTe.

To first order, ZnTe is not birefringent. However, under the applied THz field the structure is distorted

(from the IR probe’s perspective) due to the second-order polarization. In the crystal’s own coordinate

basis rc, χ(2),c
i jk = χ

(2) for i , j , k and 0 otherwise for this class of crystals [51, 64]. This means that waves

initially polarized in x and y, respectively, map to an induced second-order polarization in z (as well as all

other permutations).

As the incident signal and probe polarizations are fixed to components in the lab frame, it’s useful to

performing a full coordinate transform of χ(2),c
i jk to the same frame. As discussed in Sec. 4.3, we mix our

signal and probe with initially orthogonal polarizations, as illustrated in Fig 4.7, with an overlay of the

crystal in its own basis rc. The crystal is rotated 45◦ about its own yc axis to reflect the ⟨110⟩ cut of the

crystal. We further allow a rotation about the lab z axis by angle θ which is critical in establishing coupling

for the two waves [30, 64, 69].

The coordinate transform Ti j from rc to r is given by first rotating 45◦ about the y axis, then a subsequent

rotation θ about the z axis. This is written as

Ti j =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

 (4.14)

=


cos θ√

2
− sin θ cos θ√

2

sin θ√
2

cos θ − sin θ√
2

1√
2

0 1√
2

 (4.15)
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Figure 4.7: Lab coordinate system r showing the initial orientation of the polarizations of the orthogonally
polarized THz signal and laser probe as well as the orientation of the crystal coordinate basis for the ⟨110⟩-
cut ZnTe with an additional rotation θ about the lab’s z-axis.

Our tensor can then be written in the laboratory frame by recomputing the elements from the sums

χ(2)
i jk = TirT jsTktχ

(2),c
rst (4.16)

Simplification is straightforward as, for zinc blende-ordered crystals, χ(2),c
rst has only the six elements where

rst = 123 (and its permutations). Furthermore, this will be then dotted in the lab frame with the THz

waveform of the form of (4.12)

P̃i = 2ϵ0 χ
(2)
i jkẼT Hz

j Ẽk + 2ϵ0 χ
(2)
i jkẼT Hz

j Ẽ∗k (4.17)

where the field ẼT Hz
j has only a j = 2 component and the components of the laser field Ẽk are left arbitrary.

Therefore one only needs to include the nine elements for i and k, each summed over the six elements on

the right hand side. Symmetries in the components of Ti j also help simplify the solution.

Inserting the dot product with the THz field, we then find the 2D tensor

χ(2)
i jkẼT Hz

j = χ(2)
i2kẼT Hz

2 (4.18)

= χ(2)ẼT Hz


3 cos3 θ − 2 cos θ 2 sin θ − 3 sin3 θ 0

2 sin θ − 3 sin3 θ 3 cos θ − 3 cos3 θ 0

0 0 − cos θ

 (4.19)
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We define an effective second order coupling tensor χ(2),e f f (θ) as

χ(2)
e f f (θ) = χ(2)


3 cos3 θ − 2 cos θ 2 sin θ − 3 sin3 θ 0

2 sin θ − 3 sin3 θ 3 cos θ − 3 cos3 θ 0

0 0 − cos θ

 (4.20)

so that we can now return to our previous notation and write the second order polarization in frequency as

P̃
(2)

(ωT Hz + ω) = 2ϵ0 Ẽ(ωT Hz) χ
(2)
e f f (θ) · Ẽ(ω) (4.21)

P̃
(2)

(ωT Hz − ω) = 2ϵ0 Ẽ(ωT Hz) χ
(2)
e f f (θ) · Ẽ

∗
(ω) (4.22)

where Ẽ(ω) is the complex component of our laser. These look similar to the form of the first order

polarization in birefringent materials (Eq. (3.58)), but with a strength now proportional to ẼT Hz.

4.4.2 Dependence of coupling strength on crystal rotation

To see the effect of crystal rotation on the coupling between the Ti:sapph and THz signals in the crystal,

we now treat both as monochromatic waves and apply Maxwell’s equations. A similar solution is presented

in [64, 69] by allowing for the rotation of the applied THz field instead of the crystal. However, this

yields a solution in the coordinate basis of the birefringence induced by the signal, which does not in

general coincide with the laboratory frame. While a result in the lab frame can be computed the solution

numerically, an analytical answer can be approximated with this approach.

The broadband laser is regarded as a monochromatic wave with frequency given by it’s center wave-

length λ0 = 800 nm (ω0 ≈ 2.35 Prad/s) and the THz signal to be near-DC (ωT Hz →0). Again returning to

Maxwell’s equations, Eq. (3.7) with first and second order polarizations is written

∇ × ∇ × Et(r) +
1
c2

∂2Et(r)
∂t2 = − 1

ϵ0c2

∂2Pt(r)
∂t2 (4.23)

= − 1
ϵ0c2

∂2

∂t2

[
P(1)

t + P(2)
t

]
(4.24)
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For each we use a t and z dependence Et(z) = Ẽωek(ω)z−iωt + c.c. and note that to first order the polarization

is isotropic. We denote the THz frequency as ωT Hz = Ω. From Eq. (4.21) and (4.22) we see that for finite Ω

we will have solutions at two waves with frequencies ω± = Ω ± ω indicating the generation of sidebands.

k+ × k+ × Ẽω+ +

(
1 + χ(1)

ω+

)
ω2
+

c2 Ẽω+ = −2ẼΩω2
+

c2 exp {i [k(Ω) + k(ω) − k(ω+)] z} χ(2)
e f f (θ) · Ẽω (4.25)

k− × k− × Ẽω− +

(
1 + χ(1)

ω−

)
ω2
−

c2 Ẽω− = −2ẼΩω2
−

c2 exp {i [k(Ω) − k(ω) − k(ω−)] z} χ(2)
e f f (θ) · Ẽ

∗
ω (4.26)

For a very narrow-band probe laser and finite Ω, these yield solutions for what is known as electro-optic

upconversion [78, 79]. In our DC limit where Ω ≪ ω, ω± → ±ω. Noting that k(Ω) = n(Ω)Ω/c → 0 and

using our real monochromatic wave with Ẽ
∗
ω = Ẽ−ω and k(−ω) = −k(ω), these become

k × k × Ẽω +

(
1 + χ(1)

ω

)
ω2

c2 Ẽω(r) = −2EΩω2

c2 χ(2)
e f f (θ) · Ẽω (4.27)

k × k × Ẽ
∗
ω +

(
1 + χ(1)

ω

)
ω2

c2 Ẽ
∗
ω(r) = −2EΩω2

c2 χ(2)
e f f (θ) · Ẽ

∗
ω (4.28)

which are simply complex conjugates of each other. In this form we can treat Eq. (4.27) in the same manner

as we did for the first-order birefringent materials in Sec. 3.4. Eq. (3.66) becomes

{
(k × k×) +

ω2

c2

[
n2

oI + 2EΩχ
(2)
e f f (θ)·

]}
Ẽω = 0 (4.29)

with n2
o = 1 + χ(1)

ω and I the identity matrix. If we also scale k by ω/c by defining n in the same direction

as k with magnitude from n = kc/ω we can normalize this as

{
(n × n ×) +

[
n2

oI + 2EΩχ
(2)
e f f (θ)·

]}
Ẽω = 0 (4.30)

Noting that our applied field has wavevector k = kẑ, we can find the modified index n as before by writing

out the matrix of (4.30)


n2

o + 2EΩ χ
(2)
e f f ,11 − n2 2EΩ χ

(2)
e f f ,12 0

2EΩ χ
(2)
e f f ,12 n2

o + 2EΩ χ
(2)
e f f ,22 − n2 0

0 0 n2
o + 2EΩ χ

(2)
e f f ,33 − n2




Eω,x

Eω,y

Eω,z

 = 0 (4.31)
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where χ(2)
e f f ,i j are the θ-dependent elements of χ(2)

e f f (θ) given by Eq. (4.20). We again have an eigenvalue

problem, this time defined in the effective index n2. Setting the determinant of the matrix of coefficients

equal to zero and inserting the elements given by Eq. (4.20) yields three eigenvalues we denote n2
± and n2

3

n2
± = n2

o +

(
cos θ ±

√
1 + 3 sin2 θ

)
χ(2)EΩ (4.32)

n2
3 = 2 cos θ χ(2)EΩ (4.33)

The eigenvector associated with n3 is (0,0,1), indicating an induced polarization along z. This implies a

spatial walk off as before, which we neglect for our thin crystal.

As the second order coupling is weak compared to the dispersion (χ(2)EΩ ≪ n2
o), to first order the n±

indices can be expanded as

n± ≈ no +
χ(2)EΩ

2no

(
cos θ ±

√
1 + 3 sin2 θ

)
(4.34)

For comparison to the literature, we insert the conventionally cited Kleinman coupling parameter which is

χ(2) = 2d14. We then find that the induced birefringence ∆n = n+ − n− is

∆n =
4d14EΩ

no

√
1 + 3 sin2 θ

2
(4.35)

so that the induced birefringence is proportional to

∆n ∝ EΩ

√
1 + 3 sin2 θ

2
(4.36)

in agreement with [64, 69]. In our case the solution scales with 4d14EΩ/no instead of r41EΩn3
o. This comes

from the choice of working with the susceptibility and not the impermeability tensor, which are inversely

related [51] with, d14EΩ related to ∆n2 whereas for r41EΩ it is 1/∆n2.

We can continue the solution and solve for the eigenvectors associated with these solutions, which

again yield the same θ dependence as in [64, 69]. The angle α of the induced optic axis is found to vary as

a function of the crystal rotation. The induced retardance Γ is proportional to ∆n (Eq. (3.76)) above so that
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this is also a function of θ. To compose the Jones matrix EO of this effective waveplate one must then first

transform the birefringence to the lab system as

EO(θ) = R[α(θ)] ·

 exp [iΓ(θ)/2] 0

0 exp [−iΓ(θ)/2]

 · R[−α(θ)] (4.37)

One finds this does not readily simplify in θ, though the trend can be plotted numerically [69].

To find an approximate analytical solution we make a small birefringence approximation in Eq. (4.31)

by assuming the on-diagonal terms are dominated by the first order index of refraction. Neglecting the

on-diagonal χ(2)
11 and χ(2)

22 terms this yields


n2

o − n2 2EΩ χ
(2)
e f f ,12 0

2EΩ χ
(2)
e f f ,12 n2

o − n2 0

0 0 n2
o − n2




Eω,x

Eω,y

Eω,z

 = 0 (4.38)

for which the determinant equation in x − y immediately yields the solutions in terms of d14

n2
± = n2

o ± 4d14EΩ
(
2 sin θ − 3 sin3 θ

)
(4.39)

with associated eigenvectors in the laboratory basis that are exactly

n̂± =


1√
2

± 1√
2

 (4.40)

We see that the induced optic axes then lie at 45◦ from the x and y axes, just as a circular polarizer. To first

order the strength of the retardance is found from ∆n to be

∆n = 4d14EΩ
(
2 sin θ − 3 sin3 θ

)
(4.41)

which yields again a retardance Γ(θ) per unit length proportional to ∆n(θ), as given by Eq. (3.76). In the

Jones calculus this is the operator

EO(θ) = R(45◦) ·

 exp [iΓ(θ)/2] 0

0 exp [−iΓ(θ)/2]

 · R(−45◦) (4.42)
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For our laser initially polarized in x, we find after the EO crystal

Ẽ′ω(θ) = EO(θ) ·

 1

0

 Ẽω =

 cos [Γ(θ)/2]

i sin [Γ(θ)/2]

 Ẽω (4.43)

If we immediately split these two polarization components, measure their intensities (|Ẽω|2) then take the

difference over the sum to find a measured signal S lin(θ, ω)

S lin(θ) =
|Ẽ′ω,x|2 − |Ẽ′ω,y|2

|Ẽ′ω,x|2 + |Ẽ′ω,y|2
(4.44)

=
cos2 [Γ(θ)/2] − sin2 [Γ(θ)/2]
cos2 [Γ(θ)/2] + sin2 [Γ(θ)/2]

(4.45)

= cos[Γ(θ)] (4.46)

Which is similar to Eq. (4.47), but now with the crystal orientation dependence as

Γ(θ) =
(
2 sin θ − 3 sin3 θ

)
Γ0 (4.47)

with Γ0 ∝ LẼT Hz, where L is the crystal thickness.

We can also introduce the circular polarizer before splitting and measuring the polarizations as we do

in our setup. This then has the signal taking a form similar to Eq. (4.5) as

S circ(θ) = − sin[Γ(θ)] (4.48)

For comparison, we can follow the same procedure to compute the measured signals S (θ) numerically

using the eigenvalue and eigenvectors provided by [64, 69]. We take the amplitude of the retardance Γ0 =

0.4 for each and plot the angular dependence in Fig. 4.8 for the cases with and without the circular polarizer.

From Fig. 4.8 we see that the coupling is strongest for θmax = 90◦, 270◦. A comparison in the maximum

induced change in the amplitude for the two arrangements also suggests a larger signal when measuring

with the circular polarizer.

The estimate of the on-diagonal of χ(2) tied to SFG having little effect on the induced retardance appear

to hold based on this comparison. This is identically true at θmax where the on-diagonal terms vanish.

Finally we observe that the angular dependence of the signal coupling appears similar to the apparent
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rotational symmetry of the crystal viewed in the direction of signal and probe propagation seen in Fig. 4.6

which is that of a pinched regular hexagon.
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Figure 4.8: EO signal strength as a function of crystal rotation angle θ using numerical solutions from [64,
69] as compared to analytical approximations using Eq. (4.46), (4.48), and (4.47) measured after the EO
crystal (top) and with a circular polarizer prior to measurement (bottom) for a retardance amplitude of Γ0 =

0.4

4.4.3 Spectral decoding approximation

With the geometric coupling between the polarizations determined, we now insert the approximation for

EOSD. Both our chirped laser pulse and THz signal have a finite bandwidth and temporal extent. As stated

in Sec. 4.1, to first order we therefore assume that each frequency component sees only a birefringence

with a strength proportional to the transient of the signal that coincides with the group delay τ(ω) with that

frequency component. From the preceding section we then introduce

de f f (θ) =
(
2 sin θ − 3 sin3 θ

)
d14 (4.49)
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In summary our signal (using our quarter waveplate) is given by the equations

S (θ, ω) = − sin
[
de f f (θ)Γ(ω)

]
(4.50)

Γ(ω) ∝ ET Hz

[
τg(ω)

]
(4.51)

τg(ω) =
∂ϕ

∂ω
≈ D2(ω − ω0) (4.52)

(4.53)

where D2 is the group delay dispersion of our linearly chirped laser pulse (Sec. 3.3). By measuring Γ and

converting the frequency axis to time via τg(ω), we can determine ET Hz(t).

This assumes that the two pulses stay velocity matched with each other while propagating the full

length of the crystal. This may not be true of the index of refraction at the very different wavelengths is

significantly different. It further assumes that dispersion does not cause appreciable distortion to either

the probe or signal. These can be violated if the material dispersion is strong enough over the range of

frequencies covered by the probe and signal spectra.

4.4.3.1 Dispersion effects

In the case studied by [66, 69], the effect of dispersion in ZnTe for a 15-fs laser pulse and THz pulse

with a duration of 67 fs were studied. Significant distortion of the THz signal was observed owing to the

power spectra extending up to the high-frequency limit of the crystal. Similarly, significant broadening of

the large-bandwidth laser pulse was observed due to a comparatively large GDD (see Sec. 3.3).

We repeat this analysis for our less demanding case of a 100-fs laser pulse with expected bunch durations

on the order of 1 ps. We see from Eq. (3.52) that the temporal profile of the pulses vary along z via a Fourier

transform of the initial spectrum multiplied by an exponential factor related to z and the wavevector k(ω)

which is in turn related to the index of refraction. We can numerically compute n(ω) as well as the discrete

Fourier transform (DFT) so this can be written

Et(z) = DFT
{

Ẽω(0) exp
[
i
n(ω)ω

c
z
]}

(4.54)

for which we need the form of n(ω).
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The complex index of refraction for ZnTe in the THz regime ñT Hz(ν) is [66, 69]

ñT Hz(ν) = ϵel +
S 0ν

2
0

ν2
0 − ν2 − iΓ0ν

(4.55)

with the parameters ϵel = 7.4, S 0 = 2.7, ν0 = 5.3 THz, and Γ0 = 0.09 THz. In the IR regime we have for nIR

nIR(λ) =

√
4.27 +

3.01λ2

λ2 − .142
(4.56)

where λ is given in µm. These are plotted in Fig. 4.9 over the THz and IR regimes with the complex index

written in terms of its real and complex components n and κ as

ñ(ν) = n(ν) + iκ(ν) (4.57)
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Figure 4.9: Indices of refraction for ZnTe in the THz (top) and near IR (bottom) regimes (Eq. (4.55)
and (4.56)). In the THz regime this is plotted as the real and complex components n(ν) and κ(ν).

Using these and Eq. (4.54) we can compute the propagation of the two pulses through the crystal. As

shown in [30, 66, 69], one can use these to compute an effective frequency response for the crystal. For 1

mm-thick ZnTe the FWHM high-frequency limit is found to be νmax ≈ 2.5 THz. This corresponds to an

approximate temporal resolution of ∼200 fs, RMS.
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To see the effect, first we consider a 1 ps, FWHM transient propagation through the crystal with our

Ti:sapph laser pulse which has been chirped to an intensity FWHM of 3.5 ps. The corresponding transients

after propagating a distance L through the crystal in 0.2-mm steps up to our full crystal thickness of 1 mm

are shown in Fig. 4.10.
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Figure 4.10: Propagation in ZnTe of a 1-ps Gaussian transient (black) with the Ti:sapph pulse linearly
chirped to a length of 3.5 ps (red). The vertical offsets indicate the propagation length L at which the
transients are computed using Eq. (4.54). The head of the signals in time is to the left, tails to the right.
Relative temporal offsets of the pulses is preserved.

Fig. 4.10 shows very little distortion to either transient in this case. However there is a slight group

velocity mismatch observed after the full length L = 1 mm with the THz pulse leading the laser pulse

by 180 fs. As the retardation occurs over the full propagation length, we see that the components of the
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laser will sample a sliding window along the THz transient, consistent with the expected time resolution.

Furthermore, distortion to the laser pulse is minimal compared to the pulse length with a broadening of 85

fs. For the THz pulse, the temporal width changes by <10 fs.

This is a highly idealized case. For further illustration we look at the so-called “spiked bunch.” The

spiked bunch can occur in the electron beam when second-order chromatic (energy-dependent) effects of

the beam optics are considered, generating a distribution with a spiked head and longer tail.

For good measure we also consider the low-frequency losses discussed in Sec. 2.4, in particular as

shown in Fig. 2.7.

For this simulation then, we generate the signal from an arbitrary spiked bunch distribution as shown

in Fig. 4.11. The distribution is transformed, the square-root of the amplitude response from Fig. 2.7 is

applied to the complex field generating the low-frequency losses, and the result is transformed back to the

time domain.
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Figure 4.11: The transient of an arbitrary spiked distribution signal in time (top) and corresponding power
spectra (bottom). Black curves indicate original signal with red after applying low-frequency losses shown
in Fig. 2.7

This now generates a signal with somewhat higher frequency content with a portion of the tail extending

beyond the 2.5 THz limit of the crystal. Further, we see that the effect of the DC losses cause the signal
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to effectively “sink.” That is, the original distribution appears to rest within a long, slow dip, allowing the

signal to go negative.

We then do as before and propagate this signal through the thickness of the ZnTe crystal, as shown in

Fig. 4.12. With respect to the peak values, the THz signal advances on the laser only 60 fs in this case.

However, an additional ringing in the transient tail is observed. The short peak is seen to slowly broaden

and evolve into a quickly oscillating tail. Such features are observed whenever the signal has temporal

structure with a periodicity greater than the 2.5 THz cutoff of the thick crystal. The analysis of [66, 69]

demonstrated similar ringing with thinner crystals but where much shorter signals were applied.

Finally, we note that the slow oscillation generated by the DC losses does not appear to translate into

any dramatic effect. This is to be expected as the frequency of such structure is well-within the flat response

region below 2.5 THz.

4.4.3.2 Chirped pulse distortions

The goodness of the spectral encoding approximation continues to be studied. An effective time reso-

lution for the measurement

τres =
√
τoτc (4.58)

where τo is the transform-limited laser pulse length and τc is the chirped laser pulse has been suggested [80–

82]. Where the probe pulse is stretched further, the signal measured begins to become a distorted replica of

the signal.

To see the effect, we consider that at every point along z, the induced retardance must in fact be summed

over the full spectrum of the THz field. Following the treatments of [51, 67, 76] using the slowly-varying

envelope approximation, the infinitesimal change to the frequency content of the probe laser with initial

polarization in x after a length L is given by the sum-frequency generation integral

∆Ẽx(ω) ≈ 2iωL
cn(ω)

de f f (θ)
∫ ∞

−∞
ẼT Hz(ω′)Ẽx(ω − ω′)

{
ei∆k(ω,ω′)L/2sinc

[
∆k(ω,ω′)L/2

]}
dω′ (4.59)

∆k(ω,ω′) = k(ω′) + k(ω − ω′) − k(ω). (4.60)

Note that (assuming ∆k ≪ 1) the SFG field grows linearly with crystal thickness L so that the intensity of

the signal should grow as L2. This growth is of course only true where the generated signal remains small
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Figure 4.12: Propagation in ZnTe of the DC-suppressed spiked distribution of Fig. 4.11 (black) with the
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length L at which the transients are computed using Eq. (4.54). The head of the signals in time is to the left,
tails to the right. Relative temporal offsets of the pulses is preserved.
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compared to the THz and laser fields beyond which point depletion of these sources sets in, diminishing

signal growth.

From the cross-coupling of the polarizations above, we expect an equal and opposite change to the

spectrum in the y polarization so that after the ZnTe crystal we have

 Ẽ
′
x(ω)

Ẽ
′
y(ω)

 =
 Ẽx(ω) + ∆Ẽx(ω)

−∆Ẽx(ω)

 (4.61)

The usual Jones matrix analysis for the subsequent quarter-wave plate and polarizer can then be used to

analyze the signal from the difference over the sum of the intensities. We consider then another example

of a spiked bunch with low-frequency losses where there are negligible distortions to the signal itself from

dispersion. This time we compute the signal numerically using Eq. (4.59) and (4.61) and perform the map

to the time axis using our knowledge of the group delay τg(ω), as would be done in a measurement.

Our signal has an initial FWHM of 1 ps. Again applying the low frequency losses of Fig. 2.7, we then

propagate through 1 mm of ZnTe with the result shown in Fig. 4.13. The signal appears relatively unaltered.

−7.5 −5 −2.5 0 2.5 5 7.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t [ps]

E
T

H
z(t

)

 

 

Signal
Signal + dispersion

Figure 4.13: Test signal used to simulate EOSD without dispersion (black) and after propagating through 1
mm of ZnTe (red). Original signal is 1 ps FWHM in duration.

To envelope the entire signal, a minimum laser pulse duration of 2 ps is suggested though longer may

be preferred, for example, to establish the tail. Simulations using Eq. (4.59) and (4.61) are performed to
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show the effect of chirp on the measured signal. We start with our Fourier-limited 100-fs pulse. We then

compute the signal that would be measured for laser pulses with chirped durations varying from 2 ps to 8

ps in 1.5 ps steps, shown in Fig. 4.14 in comparison to the original signal.
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Figure 4.14: Simulations of the signal that would be recovered by EOSD as compared to the original (black,
bottom) using varying laser durations τc = 2 ps to 8 ps in 1.5 ps steps, from bottom to top. Initial laser pulse
duration τo = 100 fs. (Vertical offsets arbitrary.)

As we see, if one over-chirps the laser pulse, significant distortions begin to set in. Therefore we require

that the laser be stretched as little as possible to envelop the time window of interest to avoid sacrificing

temporal resolution.

An attempt to circumvent this via numerical deconvolution by matrix inversion was suggest by Yellam-

palle, et al [77]. This was subsequently met with only partial experimental success on real data [68]. In
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our own case the algorithm was attempted using the data presented in this paper, but numerical noise was

found to dominate the recovered signals. Further the reconstruction approach suggested does not account

for the effects of velocity mismatch in the crystal, which we have shown in the preceding section to produce

significant distortion when the signal has fine time structure.

So far we have assumed that our laser system is well-synchronized to the CTR pulse, that is to say, both

the accelerator and the Nd:YLF drive laser. Where there is some additional shot-to-shot variation in their

time of arrival we are forced to extend the chirp of the laser further to keep the signal within our temporal

field of view. This can adversely impact the effective time resolution given by Eq. 4.58.

We have additionally presupposed good knowledge of the laser’s spectral amplitude and phase for de-

coding the signal. This however remains to be measured.

To verify these, we now turn to a rigorous analysis of the laser including details on the synchronization

electronics used, their performance, and a time-frequency domain analysis of the Ti:sapph laser probe.



CHAPTER 5

LASER SYNCHRONIZATION AND CHARACTERIZATION

To consistently see the beam’s full longitudinal profile, we must minimally stretch the pulse to the

electron bunch length plus some additional tolerance for shot-to-shot temporal fluctuations so that the signal

being measured is within our effective temporal field of view. To maintain sub-picosecond time resolution

in the chirped pulse approximation, as given by Eq. (4.58), we find that these fluctuations must be reduced

to 1 ps or less.

For our alternative use of the Ti:sapph system as drive laser (Sec. 2.6), the UV output must be synchro-

nized to the L-band RF gun to within at least 1◦ of the accelerator RF (2 ps), a less stringent requirement.

In this chapter we discuss how synchronization of the Ti:sapph laser system was accomplished and ver-

ify that the solution found meets the above requirements. We will also address potential intensity instabili-

ties that can be introduced by unstable triggering of the 1-kHz pulse selection in the Ti:sapph regenerative

amplifier (regen). We conclude with measurements of the temporal properties of the individual pulses.

Synchronization with the accelerator requires management of two time scales. The first is ns-scale

synchronization of the regen amplifier to the photoinjector 1-Hz event that triggers the accelerator’s RF

pulse forming network and instrumentation. The regen selects a 1-kHz train of pulses from the 81.25-MHz

seed train with the ability to gate any subset of this train. A 1-kHz trigger must be provided to select

these pulses at the same time as the 1-Hz event so that both choose the same RF cycle from their higher

harmonics. This ensures regular timing of the laser with respect to the gun RF pulse and data acquisition

from shot to shot.

The second time scale is fs-scale synchronization of the seed laser 81.25-MHz pulse train to the 1.3-

GHz master oscillator that drives the photoinjector RF. This drives the stability of the launch phase at the

photocathode when operating in UV drive laser mode and beam-probe laser jitter in the context of EOSD.

As EOSD is to be performed on beam generated using the existing Nd:YLF laser system, good cross-

synchronization of the two lasers is as important as timing to the accelerator. The timing of both laser

systems are therefore examined.

We discuss the fine temporal stability in the usual parameters of jitter and drift. Jitter refers to the

spread of fast, shot-to-shot fluctuations in the output time difference of the seed laser with respect to some
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reference signal. This is typically less than 1 ps. Drift is the change in the mean time difference from a

reference signal over extended periods, of the order ps/hour.

5.1 Coarse triggering of the Ti:sapph amplifier

With the Ti:sapph regen’s fine synchronization driven primarily by that of the seed laser, we first look at

coarse timing of its 1-kHz repetition rate to the 1-Hz A0PI clock. The 1-kHz trigger is used by the Dazzler

and Spitfire timing electronics to determine which pulses in the 81.25-MHz seed laser pulse train to capture

for shaping and amplification.

As the gun RF is fed by an RF macropulse with 400 µs maximum duration and some instrumentation

(e.g. beam position monitors) only diagnose the first bunch in each macropulse, only one pulse of a given

1000-pulse regen cycle is relevant to beam physics experiments at the photoinjector.

A block diagram of the full synchronization scheme is shown in Fig 5.1. The 81.25-MHz seed laser

output is internally synchronized to the 16th subharmonic of the 1.3-GHz master oscillator. Where addi-

tional fine temporal phase monitoring and control are needed, a secondary, external PLL has been added.

Details on this are described later in Sec. 5.2.3 with the secondary, external PLL illustrated in Fig. 5.10.

For slow trigger generation the 81.25-MHz sub-master is further divided down to 9.028 MHz and used

as the clock for two digital counter synthesizers integrated on a system of field programmable gate arrays

(FPGA). The first of these is the existing 10-Hz signal generator and count-down dividers providing 5-, 2-

and 1-Hz signals. The signal generator selects the 10-Hz to be in phase with the building’s 60-Hz AC.

The 1-kHz trigger is generated by upsampling of the slower 10-Hz clock. This 1-kHz signal fires the

regen’s Q-switched pump laser, the regen pulse-picking Pockels cells, and the Dazzler pulse shaper.

A µs-scale instability is introduced by this synchronization of the 10 Hz to the 60-Hz main line. As will

be demonstrated throughout this section, this adds a number of complications to the triggering system with

regards to 1-kHz trigger generation, Dazzler timing requirements, and the stability of the regen pump laser.

The Dazzler diffracts the shaped laser pulse train into the regen cavity for amplification by loading a 33

µs-duration acoustic waveform into the AOPDF. The electronics to load the waveform must be triggered 25

µs before the regen system. Therefore the 1-kHz trigger must provide two output channels with independent

time delays to allow the Dazzler to be fired in advance of the regen. Where a 1-kHz clock stable to the
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microsecond is available, this becomes unnecessary as the Dazzler can instead be configured to trigger on

delay of the previous pulse in the train.

Figure 5.1: Block diagram of timing scheme used to synchronize the Ti:sapph laser system to the photoin-
jector.

For the Pockels cells, the 1-kHz event is synchronized by the time delay generator (TDG) to be locked

with the 81.25-MHz signal of the seed laser for pulse selection. A 1-Hz, 1 ms-duration logical signal is

then used to gate only the 1-Hz pulses on-time with the gun RF pulse.

The coarse, 1-kHz trigger signal has been derived passively using a signal generator as well as actively

using a preferred custom trigger synthesizer built on an Altera (part no. EPF10K40RC208-3) FPGA for our

purposes.

5.1.1 1-kHz burst generation

In the simplest case, an externally triggered signal generator operating in burst mode can produce a

train of 1-kHz pulses fired at each 1-Hz event to produce a steady signal. The burst generator is set to fire a

fixed number of pulses at a fixed frequency of approximately 1-kHz sufficient to fill the time between slow

trigger events.
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If at any time a trigger event occurs before a previous pulse train completes firing, that event is ignored

by the signal generator causing it to remain low until the following macropulse event. This gap in triggering

will cause an under-frequency protection fault in the amplifier pump laser, disabling the regen. Therefore

for uninterrupted operation, one must choose the pulse generator’s macropulse duration (product of number

of cycles and repetition rate) to be smaller than the shortest possible trigger period.

As stated above, this becomes difficult in our case due to the slow frequency fluctuations driven by the

dependence of the low repetition rate clocks on the 60-Hz main voltage. Twenty-four hour recording of the

period for these, as accumulated with an oscilloscope, reveal that the 1-Hz clock period can vary as much

as ±2.5 ms from the nominal 1 s. If the macropulse from the signal generator is set to a 997.5 ms duration

there can then be as much as 5 ms of dead time in the limiting case. This is again sufficient to generate an

under-frequency fault in the regen pump laser.

We instead upsample the 10-Hz signal which accumulates a smaller phase difference from 60-Hz fre-

quency deviations between clock resets. Measurement over 8-hours shows the 10-Hz period varying up to

only 120 µs from the nominal 100 ms with a root-mean-squared (RMS) deviation of 30 µs. This allows for

a burst generator operating with 100 pulses at 1.0012 kHz to have a maximum dead time of 1.24 ms for any

given shot, sufficient to maintain laser operation.

5.1.2 Intensity dependence on unstable triggering

Using the above burst generator as the 1-kHz trigger means allowing the period before the first cycle

in each burst to vary several tens of microseconds. This unstable repetition rate can adversely affect the

Empower and, therefore, amplified IR output.

The explanation for the transient response from a sudden change in repetition rate can be understood in

terms of the population inversion seen from one shot to the next [83]. After a pulse is emitted there is some

residual inversion left in the Q-switched cavity. This will then build back up over the pumping period to

a new initial inversion before the Q-switch is reopened for pulsing, dropping the inversion down to a new

residual.

For a constant pumping period, the initial and residual inversions will reach a steady state. However, a

sudden change in this period will temporarily disrupt this as some additional (or lesser) inversion is built up

before the next pulse is emitted.
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The effect of Empower repetition rate on the output power and pulse shape of the Q-switched laser

can be modeled with detailed knowledge of cavity properties such as upper state lifetime of the lasing

medium, cavity decay rate, inversion threshold and pumping rate [83, 84]. The simple numerical model for

a repetitively Q-switched laser suggested in [83] illustrates that for parameters typical of a Nd:YLF system,

reasonably steady-state output is reached within the first 2–3 cycles after a change in repetition rate.

The Q-switched build-up time τn associated with any n-th pulse will be related to the preceding build-up

time τn−1. For our burst generator configuration we have

τn =


τkHz for n , N

τTrig − (N − 1)τkHz for n = N
(5.1)

where τkHz ≈ 1ms is the burst generator period, N = 100 is the number of pulses in a macropulse, and

τTrig ≥ NτkHz = 100 ms is the changing, external 10-Hz trigger period. With the repetition rate (build-up

time) disrupted only on every N-th cycle, the modeling suggests that only the following n = 1 cycle has its

pulse energy disturbed greater than a fraction of a percent.

Characterization of how the single-cycle triggering impacts laser performance was done empirically.

To control the disruption, two signal generators are used. The first is used as the variable 10-Hz or slower

(τTrig ≥ 100 ms) event while the second acts as the burst generator firing N = 100 pulses with a fixed

τkHz = 999.1 µs spacing externally triggered by the slow generator.

A fast, 1-ns photodiode is connected to a 2-GHz oscilloscope monitoring the Empower output and

triggered on the 10-Hz event. In this way we observe the output of the first pulse after the discontinuity in

timing as well as its nearest neighbors with a 4-ms sample taken at each shot monitoring the n = 99, 100, 1

and 2 pulses of each macropulse train. With a zoomed trace on each of the four pulses, their amplitude and

area can be averaged over several shots to record the peak and total pulse energy of each for a given τTrig

and the associated disrupted τN , as illustrated in Fig. 5.2.

We expect the output to be steady as it approaches n = 100 and to quickly recover after the disrupted

n = 1 pulse. The n = 100, 1 and 2 pulses energies En are normalized to the energy E99 of the 99-th pulse

in each train to monitor relative changes to the steady state output. This data is shown in Fig. 5.3 as a

function of the disrupted period τ100 from varying τTrig (Eq. 5.1). To extrapolate to values outside the range

measured, a trend line based on cavity parameters roughly estimated using the measured pulse shape on a

fast photodiode [84] combined with a fit to this data using the numerical models in [83] is shown.
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Figure 5.2: Example sweep measuring regen pump laser intensity dependence on the timing disruption
introduced by 1-kHz, 100 pulse burst generator being triggered by a >10 Hz event (top). On each sweep,
the amplitude and area of the zoomed traces (bottom) of each of the n = 99, 100, 1 and 2 pulses in the
macropulse are recorded.

We note that the statistical error bars shown in Fig. 5.3 are found to be driven primarily by digital

sampling error from the use of the lower time resolution zoomed traces and not indicative of actual energy

fluctuations. As evidence of this, contracting the sampling region to cover only one pulse reduced this error

to less than 1%.

Fig. 5.3 clearly demonstrates the expected behavior with the energy of the first pulse E1 deviating

from the steady-state output at a rate of 0.023% per µs change in τ100. As the 10-Hz photoinjector trigger

(Fig. 5.1) demands operating with as much as 240 µs variation in τTrig, E1 can be expected to vary as much

as 3–8% from nominal.

As expected, however, the output quickly recovers by the second n = 2 pulse. Within error bars there

are no observable deviations in output with the fitted model suggesting relative fluctuations are limited to

< 2 × 10−4% over the range shown.

To verify that this Empower behavior translates to an observable effect on the regen amplifier’s output,

the same measurement was carried out for the Spitfire with data shown in Fig. 5.4. As the integrated output

of the 1-ns photodiode is still being used to estimate pulse energy for the 100-fs amplified pulses, sampling

error becomes much larger and the linearity of the diode response is questionable and not estimated here.
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In spite of this, the larger pump energies for the n = 1 pulse are resolved as larger amplified pulses, though

changes in E2 are not observed within measurement limits.
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Figure 5.3: Relative deviation of n-th Empower pulse energies within the 100-pulse train as a function of
τ100 from using the burst generator setup. For all other n , 100 in the train, τn = 999.1 µs (see Fig. 5.2).
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Figure 5.4: Measured relative deviation of n-th Spitfire pulse energies within the 100-pulse train as a func-
tion of τ100 from using the burst generator setup.

From these we see that the first pulse in every burst will see unwanted fluctuations while the second

appears acceptably stable. Therefore for both the EOSD probe pulse and UV drive laser pulse generation,

a delayed 1-ms duration, 1-Hz gating signal is sent to the TDG to select only the second pulse. With the

1-kHz signal generator delayed 0.5 ms from the 10-Hz signal and the gate delayed 1.5 ms, the second, more

stable laser pulse is selected to be synchronous with the 1-Hz photoinjector clock for use with accelerator
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experiments. Choosing a still-later pulse in the train may be generally preferred, however the 1-Hz master

event for the photoinjector is delayed less than 2 ms from the 10-Hz signal, not allowing sufficient time to

choose anything later than the second.

5.1.3 1-kHz trigger synthesizer

Using the above trigger generator configuration has been demonstrated to provide reasonable triggering

for the regen laser system. As a final solution, the FPGA-based active trigger synthesizer was also developed

to further improve reliability. Based on several built-in counters, it includes three primary improvements.

First, unlike an ordinary burst generator, the FPGA is ready to fire the next burst up to one half of a

micropulse period before (or after) the end of the previous 100-cycle macropulse. In this way the firing

frequencies need not be chosen with an arbitrary offset of the last micropulse duration so that the mean

value of τN is equal to τn,N .

Second, if the 10-Hz trigger does not fire within this ±1/2-cycle window, the synthesizer resumes

continuous firing of its 1 ms-spaced pulse train while it waits for the next reset. While this may result in a

laser pulse not firing in sync with the 1-Hz of the accelerator on a given shot, it ensures that the Empower

firing rate stays within its specified 500 Hz – 5 kHz range to prevent any under- or over-frequency protection

faults from forcing shut down of the laser, regardless of the state of the 10-Hz signal which can suffer

occasional disruptions.

Finally, it was observed that τTrig has a 30 µs RMS jitter with a slow drift of several tens of microsec-

onds. Adaptive feedback was therefore also included to reduce the maximum observed τ100 to the level of

jitter in τTrig and ensure that subsequent shots regularly arrive within the 1-ms allowed window. To this end,

the synthesizer counts out the difference between the nominal τTrig,0 = 100 ms and the actual time elapsed

between successive slow trigger events. For the next burst, this difference is absorbed into a small, fixed

change ϵτ in the micropulse period τµP = 1 ms over a variable number of cycles in the burst to make the

macropulse approximately equal in duration to the previous 100-Hz period.

Explicitly, the adjusted micropulse period τ′µP is

τ′µP =


τµP + ϵτ for τTrig,prev ≥ τTrig,0

τµP − ϵτ for τTrig,prev < τTrig,0

(5.2)
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A dependence of the pump laser output on changes to the firing rate was demonstrated in the previous

section. We have chosen ϵτ to be 5 µs, just 0.5% of the regular firing rate, to keep the effect introduced

by the adaptive period negligible. The number of cycles Ncor the adjusted cycle is used is to correct the

macropulse length is then,

Ncorr = int


∣∣∣τTrig,prev − τTrig,0

∣∣∣
ϵτ

 (5.3)

where int(x) is the nearest-integer rounding function. The synthesizer will switch its repetition rate from

τµP to τ′µP for Ncorr cycles so that the effective macropulse τMP length of the next burst will be

τMP = (N − Ncorr) τµP + Ncorrτ
′
µP (5.4)

As our application makes use of only the first or second cycle of any macropulse, the adapted period τ′µP

isn’t applied until later in the burst, running from cycles n = 20 to n = 20+ Ncorr to avoid any complication

with the first few shots of interest.

We expect that the difference between the arrival of the next reset trigger from the 10-Hz signal will

therefore regularly occur within ϵτ±⟨∆τ2
Trig⟩1/2 ≈ 35µs. A measurement comparing output from the custom

FPGA synthesizer to a burst generator appears in Fig. 5.5 with both being triggered by the A0PI 10-Hz

clock. The FPGA reliably matches the end of one burst with the start of the next and without needing the

large offset of the burst generator. From Fig. 5.5 we also see that the drift correlated to that of the slow

trigger is effectively removed, reducing the maximum observed fluctuations.

Statistics accumulated over a 24-hour period show the FPGA output having a spread in the final period

of just 15 µs RMS, an improvement over the 30 µs from the burst generator. The maximum deviation of

the period preceding the first shot in each macropulse τ100 is ±40 µs for the FPGA over the same 24-hour

period, in agreement with expectation and a good improvement over the ±120 µs from the burst generator.

Using the FPGA synthesizer, the IR pulse energy standard deviation for the first pulse of each burst is

found to be 3.2% with no measurable intensity drift correlated to 10-Hz triggering drift. This corresponds

to a spread of 10.1% for the UV output. Using the more stable n = 2 pulse, this is reduced to 1.5% in the

IR and 4.0% in the UV.

We find that with the adaptive correction, burst triggering dependably occurs on-time with each cycle.

With the FPGA synthesizer and second-cycle pulse selection, reliable operation of the amplifier is realized

with no observed amplifier timing faults, missed shots, or reducible intensity fluctuations.



88

0 5 10
50

100

150

200

t [min]

∆τ
10

0,
B

G  [
µs

]

0 5 10

−50

0

50

t [min]

∆τ
10

0,
F

P
G

A  [
µs

]
50 100 150 200

0

200

400

600

∆τ
100,BG

  [µs]

C
ou

nt
s

−50 0 50
0

100

200

300

∆τ
100,FPGA

  [µs]
C

ou
nt

s

Figure 5.5: Comparison of signals generated using a 1-kHz burst generator (top) and the FPGA synthesizer
(bottom) showing the difference of the period of the final shot in the burst from the nominal micropulse
period ∆τ100 over time (left) and associated histograms (right).

5.2 Fine synchronization

We now turn to the fine synchronization of both the added Ti:sapph system and existing Nd:YLF drive

laser to the photoinjector RF. Fine phase locking for both starts with the 16th sub-harmonic being counted

down from the 1.3-GHz master oscillator and fed to the built-in locking electronics of the respective seed

laser (Fig. 5.1). These internal phase mixers compare the phase of the incoming 81.25-MHz signal with

that of a photodiode mounted in the oscillator cavity. The resulting difference voltage is used to drive a

piezo-mounted intracavity mirror to maintain the phase lock.

The manufacturer specification for the Tsunami oscillator’s temporal jitter is 500 fs RMS. To verify this

a 20-GHz fast photodiode (Hamamatsu G4176-03 photodiode with Picosecond Pulse Labs 5545-107 bias

tee) was used. The signal after a custom 1.3-GHz bandpass, Q = 1000 cavity filter (Microwave Filter Co.,

Inc., 5MNSP-1.3/1.3) was measured using a signal source analyzer (Agilent E502B) consistently yielding

an RMS jitter of better than 300 fs. Similar measurements of the Nd:YLF system also yield a typical jitter

of 300 fs RMS.
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These are in good agreement with specification and with the less than 200-fs RMS jitter measured with

the signal source analyzer from the 1.3-GHz master oscillator directly.

5.2.1 Initial phase measurements

To verify long-term stability we begin with measurements using the synchronized streak camera. The

laser at the photocathode surface is imaged onto the entrance slit of the streak camera. The time of arrival

is inferred from a fit of the digitized streak image.

Details on the resolution of the streak camera were given at the end of Sec. 2.1. However, as the PLL

that maintains the streak camera’s lock to the 81.25-MHz reference may also suffer from its own drift,

a second technique was initially employed to verify the measured time of arrival using the launch phase

sensitivity of the total charge emitted from the gun [85, 86].

This “charge technique” is based on operating the RF gun at a low phase with respect to the photocath-

ode drive laser. In this regime, the emitted charge strongly depends on the phase between the laser and gun

thereby providing a means to measure the jitter between the two systems.

Consider that some minimum gradient is needed to accelerate photoelectrons excited by the laser pulse

to overcome the potential from their image charge at the photocathode. Where the gun RF phase is set such

that the sinusoidal gradient provided is lower than this critical value over the duration of the laser pulse, no

charge is emitted. As the phase of the RF is advanced, the gradient will increase until it exceeds this value

and begins to accelerate the photoelectrons emitted by the head of the laser pulse. Continuing to increase

the phase will capture still more of the emitted electrons until the gradient is sufficiently high across the

entire pulse and the full charge available by photoemission is accelerated. The total charge emitted can then

be related to a partial integration of the laser’s temporal profile in this regime [85].

We therefore assume an error-function dependence on the charge emitted as a function of gun phase for

the purposes of producing a map of charge to phase. An example of such a phase scan and corresponding

fit are shown in Fig. 5.6 with the charge emitted normalized to the shot-to-shot laser intensity.

The phase sensitivity will be highest at the center of the rising edge. For the phase scan shown in

Fig. 5.6, the maximum slope of the unnormalized scan is 49.4 pC/degree with a maximum charge of 500

pC.
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In our case the charge is monitored by an integrating current transformer (ICT) downstream of the gun.

As noise in the ICT maps to a typical effective time resolution of 1.1 ps RMS (∼0.5◦), this measurement is

only sufficient for monitoring drifts of several picoseconds.
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Figure 5.6: Scan of emitted charge normalized by laser pulse energy (Q/Elaser) versus RF gun phase scan
showing error function dependence on launch phase. For this scan, setting a fixed ϕgun = −47◦ yields a
measurable change in charge for phase fluctuations over a range of a few degrees.

Several measurements were performed simultaneously recording data using both methods for each laser

with example results shown in Fig. 5.7. For both of these sets of plots, the respective laser had a full day of

warm up prior to data taking. Gaps seen in the data for the Ti:sapph system were later found to be caused

by improper setup of the 1-kHz Dazzler triggering and have since been corrected.

Shot-to-shot fluctuations for all measurements are found to be dominated by the corresponding mea-

surement noise. For a direct comparison of observed drifts, the moving average of each of the plots is taken

to filter out the high frequency jitter. 2D histogram scatter plots of these drifts are shown in Plots (e, f) of

Fig. 5.7.

A weak one-to-one correlation is seen in the data taken for the Nd:YLF system. For the Ti:sapph, both

methods see a similar drift on the scale of a few picoseconds per hour, however this appears exaggerated

by the streak camera. This is likely owing to the streak camera synchroscan unit contributing its own

synchronization drift. In any case, real drifts beyond the stated requirements are observed.
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Figure 5.7: Temporal drift data collected with the two techniques for the Nd:YLF (a, c, e) and Ti:sapph (b,
d, f) lasers. The phase difference dt is measured simultaneously using the charge method (a, b) and streak
camera (c, d) when the respective laser is used to drive the photoinjector. For comparison of the drift seen
by the two methods, 2D histogram scatter plots of the moving average ⟨dt⟩ for each pair of data sets are
shown below (e, f).
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5.2.2 Simultaneous streaking of two images

As an alternative to eliminate the ambiguity as regards the streak camera synchronization, simultaneous

streaking of two light sources was also performed. This is particularly useful in comparing the timing of

the optical output from the two lasers. By simultaneously diagnosing the two optical pulses with the same

streak camera sweep, the relative phase difference can be measured from shot-to-shot by subtraction thereby

eliminating the drift of the images on the screen from the streak camera sweep unit.

To verify this, Fig. 5.8 shows streak data for the Ti:sapph seed laser with OTR from X09 (Fig. 2.1).

Here the frequency-tripled output of the Spitfire is used as drive laser to produce 1.5 nC, 16 MeV bunches.

The synchronization of the 81.25-MHz seed train with the 1-Hz OTR pulse from X09 at the streak

camera is achieved using a double-folded retroreflector providing a variable 12 ns optical path delay of the

laser. This is combined with the optical path of the OTR with the delay adjusted to bring both streak images

in to view on the same RF sweep. The time-axis projection of the streak image is recorded shot-to-shot for

fitting to determine the temporal centroid of each pulse.

For this measurement, the longer streaks produced in range 1 diluted the photon density of the weak,

single-pulse OTR at the streak camera’s screen. To provide a signal measurable over background, sweep

range 2 was therefore used instead. The mean streak widths taken from the Gaussian fits to the OTR and

IR data in Fig. 5.8 were 5.22±1.63 ps and 2.98±0.28 ps RMS, respectively. The deviation in the shot-to-

shot phase difference were 2.08 ps and 1.09 ps, respectively. The larger jitter seen for the OTR track are

attributed to larger measurement and fitting noise for the weak OTR signal.

For the nominal operating phase of the RF gun, we expect the gun will not significantly affect the single-

particle longitudinal dynamics that would result in drifts from the photocathode laser being mapped onto

drifts of the electron bunch time of arrival. We therefore expect the drifts of the OTR and laser signals to

be identical and comprised of the sum of the laser and streak camera synchroscan drifts.

Again applying a high-frequency filter to deduce the drift ⟨t⟩, inset (b) of Fig. 5.8 includes the difference

in drift over time showing effectively zero phase difference within a 0.63 ps RMS spread. Further, inset (c)

shows the scatter plot of the filtered drifts and line of best fit with a slope of 0.99, as expected. Though we

cannot decouple the streak camera from laser drift contributions with this information, it reasonably verifies

that relative phase measurements can be accomplished with this dual imaging approach with contributions

from streak camera PLL drift removed.
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Figure 5.8: Streak camera data (sweep range 2) for simultaneous imaging of the Ti:sapph seed laser IR
and OTR from the beam using the Ti:sapph system as drive laser. (a) Raw time-axis projections from the
streak camera for the OTR (top) and laser IR (bottom). (b) Drifts ⟨t⟩ deduced from the centroid of double
Gaussian fitting after high frequency filtering (arbitrary vertical offsets). (c) 2D histogram scatter plot of
the drifts with inset line of best fit. Slope of fit line = 0.99.
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As relates to phase-locking between lasers for EOSD, we repeat this experiment using the Ti:sapph

IR and OTR from the Nd:YLF-driven electron beam. Several sweeps of the streak camera can then be

stacked to produce a stronger signal allowing for fast, range 1 measurements assuming negligible phase

drift between the 1 MHz-spaced bunches. Results are shown in Fig. 5.9 using 80, 500-pC bunches with the

streak camera operating in its fastest, range 1 sweep mode. The 2-min gap in the data for the OTR at 12

min was due to temporary loss of gun RF.

For this set, the streak widths for the IR and OTR were 1.11±0.05 ps and 4.12±.16 ps RMS, respectively.

Shot-to-shot jitter was 160 fs and 434 fs, respectively, with the larger value for the OTR signal attributed to

the longer streak length leading to a greater inherent measurement uncertainty.

We note in Fig. 5.9 an 8.5 ps/hour relative drift between the two signals manifesting primarily in the

OTR signal as well as a 5.5 ps phase jump at 32 min. This has been identified as a signature of the Nd:YLF

seed laser’s phase lock loop. A frequency difference between the seed cavity’s 81.25 MHz and reference to

the master oscillator is erroneously fed back into the cavity with the piezo experiencing a relatively constant

displacement drift until reaching its limit of travel. At this point the electronics adjust the picomotor stage

upon which the piezo mirror is mounted to reset its position to the center of the piezo travel. This movement

of the stage causes the phase jump in the seed output.

The periodicity of these resets and the slope of the drift between them have been found to be highly sen-

sitive to the alignment, optical power and warm up of the Nd:YLF oscillator making consistent correction

by laser tune up alone difficult.

We observe that the spread from drift contributions in these data sets account for the significant, ps-scale

portion of timing instability with drifts exceeding 5 ps/hour observed in the Nd:YLF system.

5.2.3 Secondary laser phase monitor and feedback

To correct the ps-scale drift of the seed lasers while also providing an additional measure of laser phase

stability with respect to the RF, we use a setup similar to that demonstrated in [87, 88], shown in Fig. 5.10.

For phase detection, optical leakage is sent to a fast photodiode. The resulting signal then passes a 1.3

GHz band-pass cavity filter and low-noise amplifier. The phase is compared to that of the 1.3-GHz master

oscillator in a phase mixer with input RF levels attenuated to the operational range of the mixer and a
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variable phase delay on the diode signal so the phase difference can be set to operate in the mixer’s linear

response region.
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Figure 5.9: Relative time of arrival data from simultaneous (sweep range 1) streaking of the Ti:sapph IR
and OTR generated by beam produced using the Nd:YLF system as drive laser (arbitrary vertical offsets).

Figure 5.10: Block diagram of the laser phase monitor and software-based feedback used to compensate
drift in both seed lasers.

Mixer output can be used to monitor the phase difference between the laser and master with a conversion

factor of 100 mV/deg. A 4-ms sample is converted by an analog-to-digital converter (ADC) once per second

with a sampling rate of 1 MHz. The spread of the sample is recorded to monitor jitter and has resolved noise

as low as 200 fs RMS while the mean voltage of each sample is tracked for phase drift.

The synchronization electronics of both systems include input ports to which an external bias can be

applied that’s added into the signal driving the piezo-mounted mirrors. This is employed in feedback mode
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using software-based differential amplification of the ADC output. The mean of the sample is compared

to a set reference voltage and, with the appropriate programmable gain, generates a corrector voltage sent

back to the associated seed laser via an internet rack monitor (IRM) [89] signal.

The digital IRM channels used to provide the programmable corrector voltage have a minimum step

size of 5 mV. For the Ti:sapph system, this was found to be too large to provide adequate time resolution

given the feedback sensitivity of the electronics. To correct this, a 1/9 analog voltage divider is added to the

phase input port of the Tsunami to reduce the effective minimum step size of the IRM output to acceptable

levels with changes to the effective differential amplifier gain accounted for.

5.2.4 Measurement of corrected laser-to-laser drift

Feedback loop performance for phase stability between the two lasers was verified by again analyzing

simultaneous streak imaging of the Nd:YLF UV and amplified Ti:sapph IR outputs. Results for phases

tracked by the phase detector in the feedback loop versus that on the streak camera are compared in

Fig. 5.11. The phase as recorded by the streak camera and loops are plotted with the concurrent secondary

feedback being applied with feedback disabled at 100 min.
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Figure 5.11: Time of arrival data taken simultaneously for the Nd:YLF (top) and Ti:sapph (bottom) laser
systems. The feedback corrector signals (blue) are generated in response to the RF phase detectors (black)
with feedback disabled at 100 min.
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Prior to this measurement, the Ti:sapph system was warmed up over a full day while in use for other

experiments. As such, the corrector phase being generated for the Ti:sapph laser is relatively stable to the

order of the laser jitter. In fact, the spread of the long-term projection seen on the phase detector is the same

(< 200 fs, RMS) whether or not feedback is enabled in this set.

The relatively stable output is nonetheless shown here for comparison to the Ti:sapph output as mea-

sured on the streak camera, shown in Fig. 5.12. We observe that the streak camera data shows an abrupt

change in the Ti:sapph streak image at 106 minutes that does not appear on the phase monitor which is also

the case for the Nd:YLF measurements. This indicates a disruption in the PLL for the streak camera which

is indeed removed after taking the difference in the output phases from the streak camera measurement

(Fig. 5.12).
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Figure 5.12: Time of arrival t determined from simultaneous streak camera imaging for Ti:sapph (red) and
Nd:YLF (blue) lasers and the deduced time difference (black). Both lasers are imaged to the slit of the
synchronized streak camera in the accelerator tunnel. Data taken concurrently with that shown in Fig. 5.11
with feedback enabled from 0–100 min.

In the data for the Nd:YLF system (Fig. 5.11), the clear sawtooth pattern as described earlier is observed

in the feedback signal. The system tracks several steep drifts with phase jumps of 9.4 ps spaced roughly

every 30 min with the periodicity growing a few minutes per cycle. The corresponding output phase as

measured by the phase detector appears flat with the spread again on the order of the laser jitter, excepting

the few cycles it takes to recover the phase lock after a jump.

The magnitude of these changes are also observable on the streak camera (Fig. 5.12) over the few cycles

it takes the feedback to recover the phase. However, the streak camera reveals that the secondary phase lock
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loop is not fully correcting the drift with the discrete phase jumps instead appearing with a magnitude of

11.2 ps. As a result, a 1.8 ps-amplitude sawtooth drift survives in the difference signal where the few-cycle

disruption from the discrete changes are neglected.

With secondary feedback disabled at 100 min, the relative phase immediately begins to run beyond this

1.8 ps drift oscillation. With feedback, however, and excluding extreme outliers from the Nd:YLF laser

phase jumps, the spread of all points taken with loops enabled is 0.81 ps RMS. This brings us within the

desired sub-ps specification for long-term timing stability.

In this section we have demonstrated how our commercial titanium-sapphire laser and transport optics

were installed and successfully commissioned at the A0 photoinjector laboratory at Fermilab. The system

is reliably synchronized to the 1-Hz RF pulse generation and instrumentation trigger with the seed laser

exhibiting temporal jitter of less than 300 fs RMS.

Long-term phase stability of both the existing Nd:YLF drive laser and new Ti:sapph system has been

diagnosed by a number of independent experiments to allow diagnosis of the Nd:YLF-driven beam by

EOSD using the Ti:sapph as probe laser. Simultaneous long-term synchronization of the seeds to within

1 ps of the 1.3-GHz master clock is accomplished using independent secondary feedback loops available

for both systems. Intensity stability of amplified IR output is found to be 1.5% RMS with a corresponding

UV pulse stability of 4%. With the system installed, we now consider the diagnosis of the time-frequency

domain of the laser pulse.

5.3 Temporal pulse shape measurement

Unambiguous laser chirp information is of great use for our ultra-fast applications. For EOSD it gives

the information required to map wavelength to time for decoding the signal sampled from the electron

beam. For the blow-out experiment, it’s to verify the laser pulse is as near bandwidth-limited as possible

to generate the shortest UV pulse after tripling. Information about the spectral phase can be fed back into

the Dazzler by subtraction to correct third order dispersion generated in the regen for more efficient tripling

and a more uniform UV pulse.

Therefore, to verify the temporal pulse shape of the output laser pulse for a given experiment, frequency-

resolved optical gating using second harmonic generation (SHG FROG) was used for complete laser phase

reconstruction [90–92].
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5.3.1 SHG FROG

Like EOSD, SHG FROG utilizes the second order polarization in an electro-optically active medium.

SHG FROG is accomplished by analyzing the spectrum of the light generated from the mixing of the

laser crossed with its time-delayed replica in a frequency-doubling crystal. By measuring the resulting

spectrum over a range of delays, a two-dimensional interferogram is generated that can be used to deduce

the amplitude and phase of a laser pulse.

In this sense SHG FROG is a form of self-referenced spectral interferometry. Other variations have

since been developed such as temporal analysis by dispersing a pair of light E-fields (TADPOLE), cross-

correlation FROG (XFROG), and spectral interferometry for direct E-field reconstruction (SPIDER) (c.f. [93–

96]). All are based on the generation of an interferogram that is subsequently analyzed to reconstruct the

amplitude and phase of the laser pulse.

Apparent signal ambiguities and level of difficulty in the interpretation and reconstruction of the inter-

ferograms varies from technique to technique, as does the complexity of the experimental set up needed to

generate the traces. Still the FROG approach is appealing for its relative simplicity. Some ambiguities exist

for SHG FROG in particular [90, 92, 97], but these are of minor consequence for our purposes.

Also like EOSD, FROG is used for ultra-short laser pulse diagnostics due to the relatively fast (≪ 1 ps)

effective optical switching time of the nonlinear interaction of optical pulses in materials. Other variations

of FROG exist with several studied and summarized neatly by Trebino, et al [90, 92, 98]. The principle

is the same for the scanning delay FROG methods, varying primarily in the optical nonlinearity used with

most depending on third-order polarization effects with each of yielding a different form of interferogram.

SHG FROG was chosen for the measurement of the Ti:sapph pulse as it depends on the much stronger

second-order polarization in a doubling crystal, making it particularly robust and straightforward to set up.

Details on SHG FROG in particular were also summarized in [97].

Though referred to as a second harmonic effect, SHG FROG is based on the two-beam sum frequency

term in the expansion given by Eq. (4.12c). As the spectra of the pulse and its replica are both primarily

at the frequency ω0 corresponding to the laser’s center wavelength λ0 = 800 nm, we see that the induced

SFG second order polarization of Eq. (4.12c) from the two-beam mixing will generate a spectrum around

an optical carrier frequency ω0,s f g = ω0 + ω0 = 2ω0, effectively a second harmonic beam.
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As with EOSD, the doubling crystal’s dispersive properties can generate measurement artifacts. How-

ever we will see that in a (uniaxial) doubling crystal some linearization of these effects is possible at the

all-optical wavelengths allowing clearer optimization of the interaction.

5.3.1.1 SHG FROG optical system

To achieve the mixing, the laser pulse must first be split to generate a replica. This is shown in Fig. 5.13

for our optical layout, built on the FROG kit from Newport Corp. (part no. FRG-KT) [99]. After splitting,

the transmitted pulse traverses a hollow roof mirror to provide a small vertical displacement. The beam

reflected by the splitter is sent to a mirror at normal incidence, mounted on a moveable stage to allow a

variable time delay τ. The two beams are then recombined by the splitter with vertically offset, parallel

paths. These are sent to a spherical mirror that focuses the beams to the same focal point in a thin doubling

crystal. For doubling over the Ti:sapph spectrum, a 200-µm thick β-barium borate (BBO) crystal is used.

Figure 5.13: Optical layout of the SHG FROG. The laser pulse is split to generate a spatial offset in one
beam and time delay in the other. These are then focused onto a BBO doubling crystal with the central,
sum-frequency beam sent to a spectrometer for measurement. Detail of the two-beam crossing at the crystal
is shown in Fig. 5.14.

The crossing at the crystal is illustrated in Fig. 5.14 including the direction of the incident and generated

beams, their polarizations, and the optic axis ĉ of the BBO crystal cut at an angle θ to the surface normal

of the crystal. Because the crystal is chosen for efficient doubling, additional SHG beams are generated as

well, corresponding to the terms given by Eq. (4.12b) from each beam interacting with itself.

The spatial separation of the various second harmonic beams shown in Fig. 5.14 is a result of conser-

vation of momentum for the effective γ + γ → γ interaction occurring via scattering in the BBO. We label



101

Figure 5.14: Geometry of the crossing of the optical pulse and its delayed replica at the BBO crystal for
SHG FROG showing the orientation of the crystal optic axis ĉ as well as the propagation and polarization
directions for the incident and generated beams. The spectrum of the SFG light varies as a function of the
delay τ, generating the FROG trace.

the wavevectors of the two incident beams k⃗1 and k⃗2. Assume for the moment the index of refraction is

well-matched at all wavelengths so that n(ω0) = n(2ω0). In this case, k(2ω0) = 2k(ω0). For SHG, a parent

beam interacts with itself yielding the subsequent doubled wavevector

k⃗11(2ω0) = k⃗1(ω0) + k⃗1(ω0) (5.5)

k(2ω0)k̂11 = 2k(ω0)k̂1 (5.6)

2k(ω0)k̂11 = 2k(ω0)k̂1 (5.7)

k̂11 = k̂1, (5.8)

and likewise for beam 2. These SHG beams are collinear with their respective parents. When the two beams

interact instead with each other we have

k⃗12(2ω0) = k⃗1(ω0) + k⃗2(ω0) (5.9)

k(2ω0)k̂12 = k(ω0)(k̂1 + k̂2) (5.10)

2k(ω0)k̂12 = k(ω0)(k̂1 + k̂2) (5.11)

k̂12 =
1
2

(k̂1 + k̂2). (5.12)
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The direction of the SFG ray k⃗12 is therefore the bisector of the two parent rays.

The non-collinear geometry is useful then to spatially separate the SHG beams from the crossed SFG

light by use of an iris, shown after the crystal in Fig. 5.13. Finally, though most of the remnant IR light

is also blocked by the iris and the measurement is spectrally resolved, a dichroic IR filter is also typically

used to block any remnant laser scatter, reducing potential stray light in the spectrometer.

5.3.1.2 The signal and effect of phase mismatch

With the initial optics described, we now consider optimization of the bulk signal. The components of

the second-order permittivity tensor for BBO couple the fundamental into orthogonally polarized SFG/SHG

light [51]. The choice of the polarization and optic axis orientations are such that both IR beams are ordinary

so the doubled light is then extraordinary. This configuration is referred to as Type-I SHG [51]. The choice

of phase matching type and crystal cut angle θ in Fig. 5.14 are given by the dispersive properties of BBO in

this frequency-doubling configuration.

Following a similar analysis as led to Eq. (4.59) but now assuming our two incident fields are the laser

pulse with spectrum Ẽ1(ω) and its delayed replica Ẽ2(ω), the SFG spectrum produced yields the FROG

signal ẼFROG, given by [51, 90, 91]

dẼFROG(ω)
dz

∝
∫ ∞

−∞
Ẽ1(ω − ω′)Ẽ2(ω′)ei∆k(ω,ω′)zdω′ (5.13)

where we have the wavevector mismatch for SFG

∆k(ω,ω′) = ko(ω′) + ko(ω − ω′) − ke(ω) (5.14)

with ko and ke denoting wavenumbers computed using ordinary index no and effective extraordinary index

n′e, respectively. If we assume the undepleted pump approximation (the signal remains small compared to

the laser) so that Ẽ1 and Ẽ2 maintain their amplitudes through the crystal, Eq.(5.13) can be integrated in z

through the crystal length L to yield

ẼFROG(ω) ∝ L
∫ ∞

−∞
Ẽ1(ω − ω′)Ẽ2(ω′)

{
ei∆k(ω,ω′)L/2sinc

[
∆k(ω,ω′)L/2

]}
dω′. (5.15)



103

Making explicit the shift τ in the time domain of the replica E1 to generate E2, we use the equivalent

frequency-domain expression to write E2 as

Ẽ2(ω) = Ẽ1(ω)eiωτ. (5.16)

We also define the complex phase matching function Φ̃(ω,ω′) as

Φ̃(ω,ω′) ≡ ei∆k(ω,ω′)L/2sinc
[
∆k(ω,ω′)L/2

]
(5.17)

With these and dropping the numerical subscript, (5.15) becomes

ẼFROG(ω, τ) ∝ L
∫ ∞

−∞
Ẽ(ω − ω′)Ẽ(ω′)Φ̃(ω,ω′)eiω′τdω′. (5.18)

From the sinc-dependence of Φ̃, this signal is maximized as∆k → 0. Indeed, where the index of refraction is

perfectly matched across all wavelengths, the spectral intensity takes the form of the ideal FROG signal [90,

92]

IFROG(ω, τ) ∝ L2
∣∣∣∣∣∫ Ẽ(ω − ω′)Ẽ(ω′)eiω′τdω′

∣∣∣∣∣2 . (5.19)

A finite ∆k in the phase mismatch function describes the slipping of the IR and blue beams away from

each other in phase as they propagate through the crystal, preventing the coherent build up of the blue

diagnostic ray while broadening the measured signal.

For the realistic case of finite dispersion, this is minimized to first order by ensuring that the indices of

refraction at the central wavelengths are equal. Assuming the angle of incidence of the laser is small so that

the three beams are approximately collinear, the phase matching condition ∆k = 0 inserted into (5.14) for

SFG at the carrier wavelengths becomes

1
c
[
ω0no(ω0) + ω0no(ωo) − 2ω0n′e(2ω0)

]
= 0 ⇒ no(ω0) = n′e(2ω0). (5.20)
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Because BBO is uniaxially birefringent, we can modify the effective extraordinary index of refraction n′e by

cutting the crystal at an angle θ from its optic axis, as was given by Eq. (3.70). However, the axes now also

correspond to different optical frequencies so that we have

1
n′2e (2ω0)

=
cos2 θ

n2
o(2ω0)

+
sin2 θ

n2
e(2ω0)

. (5.21)

As θ varies from 0 to 90◦, n′e will vary from no to ne.

The ordinary and extraordinary indices no and ne for BBO are plotted in Fig. 5.15 [100]. BBO is seen

to posses negative uniaxial birefringence (ne < no) and we note that no(400 nm) > no(800 nm). It is for this

reason the fundamental is chosen as the ordinary ray, allowing the effective index n′e(400 nm) to be shifted

down toward the extraordinary index ne to satisfy (5.21).

Adding our condition n′e(2ω0) = no(ω0), Eq. (5.21) is solved for θ to maximize phase matching at the

carrier frequencies [51]. For BBO and an 800 nm fundamental we find θ ≈ 29.2◦. The corresponding

effective index at this angle is also shown in Fig. 5.15.
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Figure 5.15: Indices of refraction no and ne (solid curves) and the effective extraordinary index n′e for a
crystal cut with optic axis at θ = 29.2◦from the surface normal (dashed curve). For this choice of cut angle,
n′e(400 nm) = no(800 nm) = 1.661 (black line).

This cut angle ensures the center band of the doubled light is efficiently matched to the laser fundamen-

tal. With the indices now fixed, we can further inspect the impact of Φ̃ which is effectively convolved into

the real FROG field spectrum in Eq. (5.18).

For τ = 0 (perfect overlap in the time domain) we have maximum SFG and Φ̃ dictates how efficiently

the various frequency components over the IR spectrum ω′ map into the blue FROG spectrum ω due to the
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finite thickness and group velocity dispersion. From Eq. (5.17), the phase of Φ̃ is given by ∆kL/2 and the

absolute amplitude by |sinc(∆kL/2)|. These are plotted in Fig. 5.16 for our 0.2 mm-thick, 29.2◦-cut BBO

over the laser spectrum. The functions are relatively constant in the IR signal wavelength λ′.
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Figure 5.16: Amplitude (top) and phase (bottom) of the phase matching function Φ̃(λ, λ′) for a 0.2-mm
thick, 29.2◦-cut BBO crystal illustrating both are relatively constant in signal wavelength λ′.

As the strong variation is primarily in λ, to first order we presume the effect of group velocity dispersion

introduced by the phase mismatch can be factored out of the integral. That is,

Φ̃(ω,ω′) ≈ Φ̃(ω,ω0) (5.22)

so that Eq. (5.18) and Eq. (5.19) become

ẼFROG(ω, τ) ∝ LΦ̃(ω,ω0)
∫

Ẽ(ω − ω′)Ẽ(ω′)eiω′τdω′. (5.23)

IFROG(ω, τ) ∝ L2
∣∣∣Φ̃(ω,ω0)

∣∣∣2 ∣∣∣∣∣∫ Ẽ(ω − ω′)Ẽ(ω′)eiω′τdω′
∣∣∣∣∣2 . (5.24)

As noted in [91, 97, 101], there is a spectral modulation of the FROG signal from the group velocity

mismatch. For linearly varying ∆k, the blue SFG light falls off as sinc2 imposing a maximum spectral

bandwidth that can be generated. This modulation is shown for our crystal in Fig. 5.17.

This spectral modulation is equivalent to a convolution of the time-domain signal with its Fourier trans-

form, imposing an effective time resolution inversely related to the modulating bandwidth. To estimate the
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Figure 5.17: Conversion efficiency at the laser fundamental wavelength λ0 = 800 nm for a 0.2-mm thick,
29.2◦-cut BBO crystal. The resulting phase-matched FWHM bandwidth is ∆λ = 12.2 nm at λ = 400 nm
with a corresponding time resolution of ∆t = 38.8 fs.

bandwidth, first we note that sinc2(∆kL/2) reaches its half-maximum when the argument ∆kL/2 ≈ 1.39.

By expressing (5.14) in wavelength as the values of n(λ) are typically specified, ∆k can be expanded to first

order in λ for a small change ∆λ about the second harmonic λ0/2. We then solve for the value of ∆λ that

yields half maximum.

From this the FWHM phase matching bandwidth is found to be

∆λ = 0.221
λ0

L

∣∣∣∣∣dno(λ0)
dλ

− 1
2

dn′e(λ0/2)
dλ

∣∣∣∣∣−1

. (5.25)

The transform to the time domain yields a corresponding temporal FWHM resolution of

∆t =
λ0L

c

∣∣∣∣∣dno(λ0)
dλ

− 1
2

dn′e(λ0/2)
dλ

∣∣∣∣∣ . (5.26)

When expressed in terms of the group velocities v and angular velocity ω, these are equivalent to the results

of [91, 101]. Using these, the spectral resolution of the FROG crystal (Fig. 5.17) is ∆λ = 12.2 nm at λ =

400 nm for a temporal resolution of ∆t = 38.8 fs. This is sufficient to resolve the bandwidth-limited laser

pulse length of ∼100 fs.
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As a final note, implicit throughout is the assumption that the beam, its replica, and their alignments

with respect to the crystal are identical. If one beam differs by a constant scale factor from the other, this

only scales the measured signal and can be tolerated. Where different spectral modulations are imparted

this is not the case and erroneous asymmetries may arise in the resulting FROG trace.

Regarding the optical system, the process of splitting the beam is largely symmetric. Both beams

are transmitted and reflected once by the splitter. The vertically displaced beam (Fig 5.13) undergoes

one additional reflection and has its vertical polarization reversed by the roof mirror. The change in field

polarity isn’t significant to the measurement, but the additional mirror must have a flat response over all

laser wavelengths. As the optics are chosen to be broadband to ensure the light reaching the crystal is

reasonably identical to the pulse entering the system, this is considered negligible.

The choice of the laser being polarized in the vertical plane of incidence (Fig 5.14) is preferred due to

higher order effects arising from the geometric dependence of the phase matching. One might suggest using

horizontally polarized light and subsequently rotating the crystal 90◦, however in this case the angle between

each non-collinear beam and the optic axis of the crystal is not equal. The collinear second harmonic rays

for each beam will then have different phase matching efficiencies. As a result the amplitudes will be

depleted at different rates by the discarded SHG beams generating a small asymmetry in the encoding of

the SFG signal.

Assuming the system to be well aligned to mitigate these effects, we proceed with analysis of the ideally

measured trace.

5.3.1.3 SHG FROG traces and reconstruction

Before detailing the reconstruction process, there are properties of the SHG FROG trace that are of

special significance for acquisition and pre-processing. Some indicate the limitations of the measurement

while others provide indicators of an improperly set up experiment as well as means to correct for certain

experimental errors [90–92, 97, 98].

Following from Eq. (5.19), we specify the ideal trace we want to measure IFROG(ω, τ) as

IFROG(ω, τ) =
∣∣∣∣∣∫ Ẽ(ω − ω′)Ẽ(ω′)eiω′τdω′

∣∣∣∣∣2 . (5.27)
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From Eq. (5.24) in the presence of crystal dispersion with linear contributions in ∆k, we have a measured

trace Imeas
FROG(ω, τ) that is

Imeas
FROG(ω, τ) =

∣∣∣Φ̃(ω,ω0)
∣∣∣2 IFROG(ω, τ). (5.28)

where Φ̃ is given by Eq. (5.17).

It’s easily shown that both traces are symmetric in delay so that I(ω, τ) = I(ω, − τ). When this isn’t the

case for an experimentally measured trace, misalignment of the system or crystal is implied and should be

corrected.

As a consequence of this symmetry, it is well understood that there is an ambiguity regarding the overall

sign of the recoverable phase [90, 91]. In practice this is trivial as one can typically deduce the sign of the

dispersion causing pulse broadening by inspection of the optical system. Where this isn’t apparent it can

be readily determined by adding additional known dispersion (such as a piece of glass) and observing the

change in the measured chirp.

It’s also straightforward to show that the frequency marginal Mω(ω) for the ideal trace is [90, 97, 98]

Mω(ω) ≡
∫ ∞

−∞
IFROG(ω, τ)dω =

∫ ∞

−∞
I(ω′)I(ω − ω′)dω′. (5.29)

For an ideal SHG FROG trace we see that Mω(ω) is the autoconvolution of the spectral intensity. For I(ω)

with a center band of ω0, the autoconvolution has a center frequency of 2ω0.

Integrating Eq. (5.28) over τ for the measured trace with some phase matching contributions we have

instead the marginal

Mmeas
ω (ω) =

∣∣∣Φ̃(ω,ω0)
∣∣∣2 Mω(ω). (5.30)

Remarkably, this indicates that spectral modulations in the measured, doubled signal such as those of crystal

dispersion (to first order) can be experimentally corrected if one also measures the incident IR spectrum.

This holds true as well for any other spectral modulation introduced to the SFG signal before being recorded

such as the effect of the filters or amplitude modulations from the spectrometer being poorly characterized.

Using a well-calibrated near-IR spectrometer, the incident IR spectrum is measured for reference before

it enters the BBO crystal. This is used to compute the intensity autoconvolution A(ω) which is equal to the

ideal frequency marginal Mω(ω) by (5.29). Because the ideal and measured traces should differ only in the
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ratio of their frequency marginals in this estimate, the ideal case is A(ω)/Mmeas
ω (ω) = constant. This would

indicate a flat spectrometer response and negligible phase matching losses.

Conversely, large discrepancies typically indicate poor phase matching (possibly bad crystal alignment)

or improperly calibrated spectrometers and should be addressed. Where some discrepancy still remains,

however, we can also generate a spectrally corrected experimental FROG trace

Icorr(ω, τ) =
A(ω)

Mmeas
ω (ω)

Imeas(ω, τ) (5.31)

= I(ω, τ). (5.32)

While there is no substitute for properly taken data, this corrective capability is a rather remarkable feature

of the SHG FROG trace used to remove systematic errors in phase recovery [90, 97, 98].

Integrating now over the frequency axis, the delay marginal is

Mτ(τ) ≡
∫ ∞

−∞
IFROG(ω, τ)dω =

∫ ∞

−∞
I(t)I(t − τ)dt, (5.33)

which is the autocorrelation of the temporal laser intensity I(t).

Though we can of course provide more meaningful information by eventually using the full trace to

reconstruct the temporal profile I(t), this can provide a quick estimate of the pulse width. For example,

assuming an approximately Gaussian temporal profile yields an autocorrelation with a width that is
√

2

larger. For a sech2 pulse, it’s ∼1.54 times larger. Then by taking the width of the delay marginal and

dividing by the assumed factor, the pulse width is estimated.

As an autocorrelation function, Mτ(τ) is maximum and symmetric in the parameter τ where there is

zero delay between the two signals. This may be non-zero for real data. As reconstruction will assume the

delay axis is symmetric about zero, the maximum, or more precisely, the first-order moment of the delay

marginal [91] is calculated to shift the axis of measured data to zero offset.

This otherwise provides a final consistency check as the autocorrelation of the recovered temporal pro-

file I(t) should agree with the delay marginal Mτ(τ).

With these consistency checks in mind while data taking, an experimental trace is then generated taking

into consideration the Nyquist sampling criterion when selecting the delay range and step size with respect

to the spectral range of interest [90]. Recovery of the amplitude and phase is then accomplished using an

iterative reconstruction algorithm. The details of efficient computational reconstruction become involved.
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Our FROG traces were analyzed using the FROG software package by Femtosoft Technologies [102],

referenced on the research of Trebino and Kane, et al [90, 91, 103, 104].

In summary, the 2D problem of finding the amplitude and phase begins with an initial guess of the

complex laser signal Ẽsig(ω, t) with its complex spectral and temporal field profiles related by Fourier

transform. A corresponding trace Isig(ω, τ) is generated computed by Eq. 5.27. The RMS error between

this and the recorded trace I(ω, τ) is minimized with respect to a scaling factor α as

G =

√
1

N2

∑
i, j

∣∣∣Ii j(ωi, τ j) − αIi j,sig(ωi, τ j)
∣∣∣, (5.34)

where both are sampled over discrete points i and j. This is referred to as the FROG error [102] and is the

standard measure for the goodness of fit for the guessed signal Ẽsig.

From here variations of Ẽsig are iterated to further minimize G. The selection criterion for the next

best Ẽsig varies depending on the optimization algorithm applied (e.g., a basic steepest decent algorithm or

the more rapid method of generalized projections [90, 91]). The software also allows alternating between

the various algorithms. Changes in technique are used to help avoid trapping in a local minimum during

optimization and can greatly enhance the speed for solutions involving complex structure.

The process is allowed to iterate until the FROG error reaches satisfactory convergence. Assuming the

above consistency checks are in reasonable agreement and depending on the level of noise in the experi-

mental data, a final FROG error of < 1% is considered acceptable.

5.3.2 FROG measurements

For these measurements an Ocean Optics Jaz spectrometer with an 1800 lines/mm grating for fine

spectral resolution in the 400-nm range was used. To measure the IR spectra for comparison and correction

by the frequency marginal, an Ocean Optics HR4000 spectrometer is used. A MATLAB interface was

written to manage data acquisition and reformatting for input and output with the Femtosoft reconstruction

software.
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5.3.2.1 Pulse length optimization

For ultrashort pulse generation we start by measuring the spectral phase of the maximally compressed

Spitfire output. To reduce the effect of statistical error, the measurement and reconstruction are repeated ten

times with the Dazzler operating in self-compensating mode. The average of the recovered spectral phase

curves is taken as their mean after setting a constant spectral phase ϕ(ω) and slope ϕ′(ω) at λ = 800 nm for

all traces to neglect the known phase and delay ambiguity from SHG FROG reconstruction [90].

This numeric phase curve can then be directly programmed for subtraction by the Dazzler and the

measurement is repeated. To allow for the overall sign ambiguity of SHG FROG, we analyze the resulting

trace using both the positive phase correction file and its negative. Indeed, only one is found to improve

pulse compactness.

Before reconstruction, the raw traces are preprocessed by spectrometer background subtraction and by

frequency marginal (Sec. 5.3.1.3). The FROG3 software transparently manages conversion of the data from

a constant-wavelength sampling to the constant-frequency sampling required by the Fourier relations [102].

Though the recovered spectral phase before compensation is needed to generate the compensated trace,

for illustration all data is shown side-by-side. A comparison of representative raw, preprocessed and recov-

ered traces both pre- and post-correction are shown in Fig. 5.18 with the corresponding marginals for all of

these shown in Fig. 5.19.

For consistency we first inspect the marginals. Preprocessed and reconstructed M(λ) are nearly identi-

cal, as should be the case where the spectral marginal correction has been applied. Also, preprocessing has

negligible impact on delay profiles making the raw and preprocessed M(τ) also nearly indistinguishable.

The comparison of raw to reconstructed marginals is reasonable within some clear instrumental noise, and

the marginals (and raw traces) are reasonably symmetric in delay.

The corresponding reconstructed amplitudes and phases are shown in Fig. 5.20 for the pulse pre- and

post-compensation. All measured traces fit with to a FROG error of < 0.35%. Before adding TOD compen-

sation a cubic spectral phase with TOD of greater than 6× 105 fs3 is observed producing a longer tail in the

temporal profile. Likewise in the initial trace (Fig. 5.18), “whiskers” appear in the delay direction of FROG

traces associated with the initial pulse, yielding the pinched ellipse shape characteristic of the presence of

TOD [90]. This also appears in the relatively slower fall off in the tail of the delay marginal (Fig. 5.19,

bottom) which are the temporal intensity autocorrelations.
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Figure 5.18: Representative raw and preprocessed SHG FROG traces and their resulting reconstructed
traces. The nonlinear spectral phase determined from repeated measurements of the top pulse is subtracted
by the AOPDF to produce the bottom series.
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Figure 5.19: Spectral (top) and delay (bottom) marginals of traces (Fig. 5.18) before (left) and after (right)
compensating for the dispersion of the pulse on the left.
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Figure 5.20: Reconstructed temporal and spectral profiles of a maximally compressed pulse before and
after subtraction of the measured third order dispersion, shown as ϕbe f ore(λ) (red curve, top right).

With the measured spectral phase subtracted by the Dazzler pulse shaper, the shoulders in the field are

suppressed though a small, 827 fs2 of second order dispersion remains. The associated trace accordingly

takes the form of a more compact ellipse. The result is the initial profile standard deviation of 78.7 fs being

reduced to 49.2 fs (98.4 fs FWHM) with a more uniform IR pulse.

Repeatability of the FROG traces and subsequent profile reconstruction is also quite good. The ten

independently measured and analyzed profiles for the uncompensated pulse are shown in Fig. 5.21. The

standard deviation in the temporal FWHM of these is found to be just 3 fs. As this technique requires many

shots to acquire each trace, this indicates both excellent laser and diagnostic stability.

With clean pulses of 100-fs duration produced, the laser system has subsequently been used in UV drive

mode to successfully produce ellipsoidal bunches [105].

5.3.2.2 Chirped pulse measurement

For EOSD, a pulse length of as much as 5 ps is desired to allow a sufficiently long sampling window.

As the Dazzler can only produce a maximum chirped length of approximately 2 ps for the given laser band-
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width, the grating compressor of the Spitfire was instead adjusted to provide the longer pulse. Moderate

variations of the pulse length can then be made on the fly using the programmable Dazzler. As the com-

pressor stage of the Spitfire provides no readback for pulse length or stage position settings, independent

measurement of the under compression is done by SHG FROG.
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Figure 5.21: Temporal profiles from ten independently measured and analyzed SHG FROG traces used to
determine the uncompensated laser dispersion.

Traces for an example chirped pulse measurement are shown in Fig. 5.22. For diagnosing a long pulse

such as this, a large 1024 × 1024 pixel FROG grid must be used to satisfy the Nyquist conditions as the

spectral bandwidth demands a time step much smaller than the large relevant time scale.

The corresponding reconstructed phases and intensities are shown in Fig. 5.23. The associated FROG

error was 0.798% yielding a bandwidth of 10.5 nm FWHM with group delay dispersion of 1.61×105 fs2 and

corresponding pulse width of 4.9 ps FWHM. The detailed phase information provided by this measurement

alleviates errors in the decoding of EOSD signals as the laser pulse acts as the carrier upon which the

diagnostic signal is encoded.

Chirped pulse lengths of 5 ps can be easily set and measured for applications in EOSD experiments to

support single-shot measurements of the electron bunch duration downstream of the emittance-exchange

beamline, which we report on in the following section.
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Figure 5.22: Experimental (left) and reconstructed (right) SHG FROG traces for a strongly chirped Ti:sapph
laser pulse used for EOSD.

780 790 800 810 820
0

0.2
0.4
0.6
0.8

1

λ [nm]

I (
λ)

780 790 800 810 820
0
100
200
300
400
500

φ(
λ)

 [r
ad

]

−5 0 5
0

0.2
0.4
0.6
0.8

1

t [ps]

I (
t)

−5 0 5
0
100
200
300
400
500

φ(
t)

 [r
ad

]

Figure 5.23: Reconstructed spectral (top) and temporal (bottom) profiles and phases for a strongly chirped
laser pulse with a spectral bandwidth of 10.5 nm and pulse duration of 4.9 ps, FWHM.



CHAPTER 6

BEAM MEASUREMENTS

With the full system commissioned and characterized, we arrive at measurements taken of ultra-short

bunches at A0PI. We initially investigate the use of the EEX beamline (Sec. 2.3) coupled with upstream

focusing to tune the final bunch duration downstream of EEX.

For these measurements the photoinjector was setup to generate bunches with 250 pC total bunch charge

with an energy of 14.3 MeV. A pyroelectric detector capable of measuring the integrated power of the THz-

domain CTR from X24 is initially used to verify the presence of a sufficiently strong diagnostic signal.

A laser probe with chirped pulse length of 4.4 ps with an effective time resolution of 660 fs is then

used to probe by EOSD. The CTR from diagnostic cross X24 (Fig. 2.6) is imaged to the EOSD breadboard

(Fig. 4.4). Relative TR-to-laser time of arrival at the crystal was made synchronous using the method de-

scribed in Sec. 4.3. The final timing is adjusted with a short scan of the laser timing over a few picoseconds

until a polarization modulation is observed. That the modulation is due to EOSD at the crystal is verified

by blocking the CTR signal from the beam to check that the modulation vanishes.

6.1 Establishing synchronization

In searching for the first electro-optic signal there will be many unoptimized factors reducing the

strength of the signal. Chief among these is the temporal overlap of the CTR and laser pulses at the crystal.

Referring to the synchronization scheme in Sec. 4.3, adjusting the relative delays seen on the photodiode

and streak camera are straightforward as the range seen on both spans several orders of magnitude more

than the uncertainty in the timing.

At the crystal, however, the detection range is of the order of a few picoseconds with a chirped pulse.

The optical path delay difference between the laser pulse and CTR from the EO crystal to the broadband

splitter that leads to the streak camera (Fig. 4.4) was estimated to be about -300 ps (the laser path is shorter

than the CTR path) with an uncertainty of ∼20 ps.
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To maximize sensitivity in establishing the delay, simplified analyzing optics were added by a flip-in

mirror after the collimating lens and before the spectral decoding analyzing optics in Fig. 4.4. No circular

polarizer is used so that in the absence of any encoding at the crystal the laser is still nearly linear. A

crossed polarizer is set to extinguish the laser with the light then focused on to a fast photodiode. Any

induced birefringence will generate an increase in the orthogonally polarized light with the photodiode

measuring the integrated value of the absolute signal (see Eq. (4.6)).

The laser delay is controlled using the Colby RF phase shifter to adjust the seed laser delay (Fig. 5.1)

while monitoring peak diode voltage, stepping backward relative to the setting that synchronizes the signals

at the beam combiner to the streak camera. The results of the first observed signal are shown in Fig. 6.1.

−300 −280 −260 −240 −220
0.18

0.22

0.26

0.3

Laser delay [ps]

P
ho

to
di

od
e 

[V
]

Figure 6.1: Photodiode signal measured after electro-optic encoding and a crossed polarizer as a function
of laser delay to determine synchronization between CTR and laser pulses at the ZnTe crystal.

The background level observed is due to imperfect extinguishing of the laser, which easily saturates the

photodiode in the absence of the crossed polarizer. A rise in the signal at a time delay of -263 ps is observed

at a level 180 times higher than RMS background noise. The result is repeatable, and removing the CTR

foil from the beam eliminates the signal indicating the presence of the signal is from the electro-optic

interaction.

This multi-shot scanning approach also indicates the maximum width of the CTR. Experiments in multi-

shot EOS have relied on this scanning technique (c.f. [61]). The temporal FWHM of the scan in Fig. 6.1

is 1.9 ps. However, because the scan is multi-shot, the 1-ps beam-to-laser jitter can artificially broaden the

signal so that this value is only an upper limit.
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The relative additional laser advance of ∼260 ps was highly repeatable in all experiments and also easily

found by observing signals resolved in the spectrometer (Fig. 4.5). With the correct timing and initial signal

established, further optimization of other factors can be performed.

6.2 Dependence of signal strength on crystal orientation

The signal is further maximized by adjusting the coupling between the orthogonally polarized CTR and

laser pulses in the crystal by remotely rotating the ZnTe crystal to produce the strongest signal. We expect

this to have a dependence on the azimuthal rotation angle θ of the crystal given by (4.49) and that this

produces only a constant amplitude modulation of the signal Γ(θ, t) = sin[de f f (θ)ET Hz(t)] being recorded.

This is verified in the signals deduced by spectral decoding in Fig. 6.2 where the crystal is rotated

through 360◦ in 5◦ steps in the presence of a signal Γ(t). For this plot the time of arrival differences arising

from the beam-laser jitter have been removed by shifting the image row-by-row so all peak absolute values

coincide on the time axis. We indeed see similar single-cycle oscillating signals for all crystal orientations

aside from the difference of a relative amplitude factor.

The analytic dependence given by (4.49) is clear in Fig. 6.3 where we plot only the peak amplitudes

of the data in Fig. 6.2 along t = 0. Included is a fit of Eq. (4.49) to the data using only a constant

amplitude Γpeak and unknown angular offset θ0 as free parameters, showing excellent agreement. The

strongest coupling in this case is observed at θ = 11◦ or 191◦, with these differing by a sign in amplitude.

6.3 Initial single bunch results with comparison to interferometery

Shot-to-shot bunch duration optimization were then performed. The input quad Q3 is manually adjusted

to vary the bunch length after EEX to find the shortest signal that can be achieved. These are shown in

Fig. 6.4 for the initial signal we label “bunch 1” and the measurement for the optimized settings denoted

“bunch 2.”

A clear contraction of the EOSD signal is observed. However, strong signal distortions from phase

mismatch in the crystal are also apparent (Sec. 4.4).
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Figure 6.2: Variation of recovered EOSD signal Γ(t) with azimuthal crystal rotation angle θ.
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Figure 6.3: Peak amplitudes of Γ(t, θ) at t = 0 from Fig. 6.2 as a function of azimuthal crystal rotation
angle θ with a fit to Eq. (4.49) with a constant amplitude and horizontal offset taken as the free parameters.
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Figure 6.4: Recovered retardances Γ(t) for different input quadrupole settings prior to EEX reflecting change
in electron bunch length.

For comparison, we estimate the signal FWHM as half the width between extrema of one full cycle of

the largest oscillation. For Fig. 6.4 these points occur in the vicinity of -1.8 ps and 0.8 ps in both sets. This

results in durations of 1.44 ps for bunch 1 and 1.14 ps for bunch 2.

As an independent measurement, interferometry of the CTR was also performed independently using

the Martin-Puplett interferometer (Sec. 2.5.1) also located at X24 for the same machine settings.

From Eq. (2.27) we had the expression for the measured Martin Puplett interferogram

IFMP(τ) ∝
∫ ∞

−∞

∣∣∣ET Hz(t) + ET Hz(t − τ)
∣∣∣2dt. (6.1)

If we assume that ET Hz(t) is real and that both the interferometer and EOSD are measuring the same tran-

sient with the recovered EOSD signal Γ(t) ∝ ET Hz(t), we can use the data from Fig. 6.4 to compute an

equivalent IF for EOSD as

IFEOS D(τ) ∝
∫ ∞

−∞

∣∣∣Γ(t) + Γ(t − τ)
∣∣∣2dt (6.2)

This supposes that the frequency-domain response function of both systems is quite similar, though we

expect distortions from phase mismatch in the EOSD that are not present in the interferometer measurement

and potentially different low-frequency losses.

We compare features of the measured and inferred interferograms to check for consistency as both

signals are in principle derived by measuring the coherent THz spectrum of the TR. The result is shown in

Fig. 6.5.
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Figure 6.5: Comparison of interferograms measured by the Martin-Puplett interferometer to interferograms
computed using the EOSD signals of Fig. 6.4 for the two different beam settings denoted bunch 1 (top) and
bunch 2 (bottom).
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As above, we define the FWHM of the IF as half the distance between the strong minima (in the vicinity

of ±1.5 ps for all traces in Fig. 6.5). In this case, for the EOSD signals, the IF width of bunches 1 and 2 are

1.48 ps and 1.21 ps, respectively. Corresponding interferometer scans are in agreement with widths of 1.50

ps and 1.17 ps, respectively.

The two are in very good quantitative agreement, especially considering the differences in the measure-

ment techniques. The advantage for EOSD, however, is of course that it produces the full trace in a single

shot and with, in principle, no ambiguity as regards the shape of the signal ET Hz(t) which is difficult to

reconstruct from an IF alone [36].

6.4 Double beam generation by laser masking

In the previous section tuning of the resulting bunch length was performed by changing the transverse

size of the beam prior to EEX. We now instead demonstrate the generation of tunable, longitudinally double-

pulsed electron bunches by imparting an initially transverse double beam structure.

Experimental results on the generation of electron bunch trains with sub-picosecond structure have

been previously reported where an initial transverse electron beam modulation was produced by masking

the electron beam directly [14].

The ability to shape the temporal profile in a non-interceptive way would be highly desired, especially

for a high average current electron accelerator. Longitudinal shaping by transverse-to-longitudinal phase

space exchange of a transverse beam modulation imparted instead by laser masking was suggested in [106].

This has great practical advantage over masking of the electron beam, primarily in that the laser mask is

easily accessible during beam operations whereas a beam mask must be enclosed in the accelerator vacuum

pipe and restricted to remote control.

Here we demonstrate proof of principle of this concept. By masking of the photoinjector drive laser

to effectively produce two horizontally offset beams at photoemission in the RF gun, an initial transverse

structure is generated. Moderate longitudinal profile tuning is then accomplished by again focusing the

beam upstream of EEX.

However, the dynamics during photoemission and acceleration are quite complex. As the beam is still

low energy, space charge forces can drive nonlinear expansion of the beam, distorting the shape imparted by

the initial laser mask [107]. Further, the focusing solenoids that enclose the RF gun for initial collimation
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of the emerging beam also cause the beam to rotate during acceleration through the gun. This known as

Larmor precession with the rotation angle as a function of propagation length θ(z) given by [107, 108]

θ(z) =
∫ z

0

eB(z
′
)dz

′

2mγ(z′)β(z′ )c
(6.3)

where B is the magnetic field in the solenoid and γ and β are the usual relativistic factors, now a function

of z for the accelerating beam.

The drive laser mask used is a 4-mm diameter spot with a 1.5-mm wide rectangular block across the

diameter. The spot as measured at the cathode is shown in Fig. 6.6. The magnification of the optical

transport line from the laser room to the accelerator enclosure is observed with the spot now having a

diameter of 6 mm. The two spots generated are given labels a and b.

Also shown in 6.6 is the resulting beam after the 9-cell accelerating cavity. An empirical approach is

taken to adjusting the solenoid strength to produce the most distinct transverse modulation. As this in turn

changes the rotation imparted by the Larmor precession we then adjust the rotation of the laser mask to

compensate. Two horizontal spots on the beam are then resolved, though for the gun and solenoid settings

used they lose some definition. The beamlets corresponding to spots a and b of the virtual cathode image

are also labeled.
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Figure 6.6: Raw images of the masked laser spot at the photocathode (left) and resulting transverse beam
modulation after the 9-cell SCRF booster cavity (right). Labels a and b are assigned to the two generated
beamlets and their corresponding laser spots.
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We note that the vertical extent is nearly identical in both cases (6 mm) while horizontally the beam is

blown out to a width of ∼12 mm. As demonstrated in [107], this behavior is explained by space-charge

expansion in the low-energy regime during the acceleration process.

As the dynamics of beam generation in the gun are highly nonlinear, again an empirical approach was

taken to determine the resulting beam distribution. Emittance measurements after the booster cavity and

before EEX (Fig. 2.1) were performed using the techniques described in Sec. 2.5.3. Longitudinal properties

are shown in Table 6.1.

Table 6.1: Measured longitudinal properties for the double beam.
σz (mm) σδ

(mrad)
E0

(MeV)
ϵ∗z (mm-
mrad)

0.68 0.65 14.1 12.2

The phase space ellipses for the transverse coordinates of the beamlets a and b were measured indepen-

dently with the parameters, inferred emittances, and combined emittances in Table 6.2. These were then

used to generated the Gaussian beam populations shown in Fig. 6.7.

Table 6.2: Results of transverse emittance measurement after acceleration for the double beam.
u Beamlet ⟨u⟩

(mm)
⟨u′⟩

(mrad)
σu

(mm)
σu′

(mrad)
σuu′

(mm/mrad)
ϵ∗u (mm-
mrad)

ϵ∗u,total
(mm-mrad)

x
a -3.43 -1.04 1.57 0.10 0.14 4.4 22b 3.43 0.83 1.66 0.08 0.14 3.7

y
a 0.01 0.32 1.77 0.13 0.20 6.2 8.5b -0.01 0.02 1.45 0.10 0.21 4.2

From Fig. 6.7 we see the desired double pulse in the horizontal x plane with the beamlets nearly over-

lapping in the y phase space. Both phase spaces are divergent so that the quad triplet Q1-Q3 (Fig. 2.1)

is used to refocus the beam prior to EEX. For our experiment, a total bunch charge of 400 pC was used

(∼200 pC per beamlet) with an energy of 14.1 MeV. The quadrupoles upstream of the EEX line were set for

Q1 = 0.5 A, Q2 = -0.8 A, with Q3 varied around the current setting found to maximize beam compression

(0.5 A).

To see the effect of focusing and the EEX line, beam propagation from where the beam was measured

down through the EEX line was computed using a MATLAB-based 3D ray-tracing program prepared using

linearized transport matrices for machine parameters at A0PI. Space charge effects were not included in

this calculation. The results for the longitudinal phase space after EEX are shown in Fig. 6.8.
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Figure 6.7: Transverse beam population deduced from measurements at the exit of 9-cell SCRF booster
cavity prior to beam focusing and EEX.
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Figure 6.8: Simulated longitudinal phase spaces of the initial transverse double beam (Fig. 6.7) as a function
of the current applied to the final focusing quadrupole magnet Q3 before EEX.
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We see from the plots of Fig. 6.8 the effect of the transverse to longitudinal phase mapping. The initial

transverse phase space follows a simultaneous shearing and rotation of the two ellipses in the resulting

longitudinal phase space as a function of the focusing strength of the input quad strength Q3.

At 0.3 A the combined phase space shows a very narrow projection in energy spread δ with a long

temporal projection in time t. At around 0.6 A, the two ellipses nearly overlap in time so that the temporal

profile is nearly that of a single Gaussian bunch. Increasing the focusing strength further then smears the

two ellipses in both energy and temporal spread.

In the range from 0.3 A to 0.6 A we can easily tune the duration and spacing of the double pulse in

the longitudinal projection over the range of a few ps. This is illustrated in a more continuous fashion in

Fig. 6.9 where only the longitudinal distribution as a function of Q3 current is shown.
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Figure 6.9: Simulated longitudinal distribution ρ(t) as a function of the current applied to the final focusing
quadrupole magnet Q3 before EEX.

6.5 Measurement of the double bunch

To verify the behavior of the longitudinal projection shown in Fig. 6.9, we turn to the diagnostics. For

this measurement, a chirped pulse duration of 5 ps was used for the laser. With machine control and data
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acquisition automated, we scan the Q3 current and record the EOSD signal for each setting, as shown in

Fig. 6.10. We have again removed the relative shot-to-shot timing fluctuations due to beam-laser jitter for

illustration.
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Figure 6.10: Recovered retardances Γ(t) as a function of the current applied to the final focusing quadrupole
magnet Q3 before EEX.

We note again the oscillatory nature of the signals as measured by EOSD. Good qualitative agreement

to the simulation in Fig. 6.9 is still observed, however. For increasing quadrupole strength the two bright,

compact signals converge to a single oscillatory cycle around 0.6 A before they again separate as each

sub-bunch becomes stretched.

From this quadrupole scan we select a strong double pulse structure with Q3 = 0.48 A and compare the

results of several repeated shots in Fig. 6.11. Excellent repeatability is observed.

As done previously, the double pulse structure is additionally verified by a Martin-Puplett interferometer

scan with comparison to an equivalent EOSD interferogram computed using Eq. (6.2), shown in Fig. 6.12.

The strong secondary harmonic peaks in the interference pattern are resolved, again with quite good

agreement in the spacing, width and amplitude of the peaks.

Finally we compare the bunch spacings and FWHM durations determined by EOSD in Fig. 6.10 with

those of the simulation shown in Fig. 6.9. The result is shown in Fig. 6.13. While the trend for the bunch
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Figure 6.11: Repeated measurement of retardances Γ(t) for a double bunch over seven shots. Relative
differences in time of arrival have been removed.
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spacing agrees well within the measurement limit, as the two converge there appears to be a discrepancy as

the simulated bunch length decreases steadily to Q3 = 0.5 A with little reduction in the spread measured by

EOSD. This may demonstrate the sacrifice in temporal resolution of overstretching the pulse necessary to

accommodate the double-bunch quadrupole scan to include a longer temporal range for tune-up.
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Figure 6.13: Comparison of measured (solid curves) and simulated (dashed curves) double bunch spacings
⟨t2⟩ − ⟨t1⟩ and FWHM durations ∆ti for the quadrupole scan data of Fig. 6.9 and 6.10

However, there is also a likely a discrepancy in the linearized beam simulation which did not include

space charge. Full simulations for A0 using ASTRA [50] have typically predicted a minimum electron

bunch length of 1 ps in the presence of higher order effects.



CHAPTER 7

CONCLUSIONS

Design and installation of single-shot diagnostics for diagnosing the longitudinal properties of an elec-

tron beam with sub-picosecond time structure has been achieved.

As this was developed on the principle of laser-based, electro-optic spectral decoding, commissioning

and characterization of a Ti:sapph laser at the A0 photoinjector was performed both for diagnostics and for

use as an ultra-fast drive laser. Stable synchronization of the laser was accomplished to within 1 ps of the

accelerator. Control and diagnosis of the laser’s spectral amplitude and phase were achieved demonstrating

laser pulse widths varied from 100 fs to 5 ps FWHM.

Transport and relative timing optics were installed to enable EOSD. Verification of the suggested geo-

metric dependence of signal strength on crystal orientation relative to the probe and signal was also mea-

sured.

Though the technique is robust, minor artifacts typical of spectral decoding in a thick crystal are still

observed. Thinner 200 µm and 500 µm ZnTe crystals were also tried in an attempt to improve temporal

resolution due to dispersion, but with the thinner crystals there was no observable signal. The limitations

of spectral decoding regarding the chirped length remain constrained by the length of the temporal window

desired to envelop the signal.

Of remaining interest are the strongly bipolar waveforms measured by EOSD. By this we mean the

near-unity ratio of the peak positive to negative amplitudes observed in the traces. Attempts to account

for this by low-frequency dispersion and the chirped pulse distortions do not significantly account for this

effect. Secondary reflections of the THz signal within the crystal have also been studied in a manner

following [66, 69] but have shown negligible effect.

The primary influence is suspected to be in an underestimate of the low-frequency losses as the diffraction-

limited spot size of the laser at the crystal is only 30 µm is the effective detector aperture. In this case a

half-width low-frequency cutoff approaching 0.5 THz is possible as an even smaller percentage of the larger

low-frequency CTR components are sampled. Combining this with a high-frequency cutoff established by

the incident bunch length, the spectral intensity begins to appear as a broadband Gaussian centered in the

0.3-THz range, resulting in a near single-cycle transient.
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It is also interesting that the two very different diagnostic techniques agree so consistently. They both

probe the same signal in the same regime, though with different transfer functions that largely depend on the

detector acceptance. With computed relative response functions included, the minor discrepancies between

the two measurements may prove useful in verifying the accuracy of theoretical modeling.

While more work is necessary to fully account for this, beams of picosecond structure are successfully

resolved showing excellent agreement with existing interferometric diagnostics. From a practical point of

view, the advantage of the single-shot EOSD over interferometry is significant, as one can monitor changes

to the longitudinal distribution live during beam tuning without the long wait and additional noise of a

multi-shot scan.

Using the system developed, a longitudinally shaped electron beam utilizing novel laser masking and

A0PI’s emittance exchange line was demonstrated for applications in future light sources. The hardware

developed here will eventually be installed at the Advanced Superconducting Test Accelerator, a 1-GeV

electron accelerator currently under construction at Fermilab.

Tuning of a double pulse structure with variable bunch spacing has been measured by the diagnostics

with the spacing observed in agreement with beam simulations. Experimental verification of transverse

structure being preserved through acceleration can offer significant advantages over the shaping technique

demonstrated in [14] by directly masking the beam after acceleration. A patterned laser can instead be used

to impart a longitudinal modulation after EEX.

To impart a very fine modulation, a patterned cathode is alternately being suggested [109] using a

nanocathode field-emission array. Nanometer-scale transverse modulations could then be produced, gener-

ating a longitudinal density modulation of the same order. By inverse Compton scattering of the resulting

beam with a pulsed laser, coherent, attosecond x-ray pulses could in principle be generated by a relatively

compact source, paving the way for a new generation of light sources.
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